By applying the property of similar triangles, the distance Amana from point A to B walked is: B. 226 ft.
<h3>How to determine the distance?</h3>
By critically observing the diagram (see attachment), we can deduce that two (2) similar triangles were formed by the First Ave. and Second Ave.
By applying the property of similar triangles, the distance Amana walked is given by:
(AB + 113)/113 = (280 + 140)/140
(AB + 113)/113 = 420/140
(AB + 113)/113 = 3
AB + 113 = 3 × 113
AB + 113 = 339
AB = 339 - 113
AB = 226 ft.
Read more on similar triangles here: brainly.com/question/1518795
#SPJ1
Bhjbkojllohnv fi hdmdjdndjdirifjf
Hi there!
We know that RST is an equilateral(all 3 sides the same length) triangle, and is therefore equiangular(all 3 angles the same value). Therefore, angle S and is equal to one-third of the triangle's angle measure.
180/3=60
60=7x+4
56=7x
x=8
-AwesomeRepublic :)

the idea behind the completion of the square is simply using a perfect square trinomial, hmmm usually we do that by using our very good friend Mr Zero, 0.
if we look at the 2nd step, we have a group as x² - x, hmmm so we need a third element, which will be squared.
keeping in mind that the middle term of the perfect square trinomial is simply the product of the roots of "a" and "b", so in this case the middle term is "-x", and the 1st term is x², so we can say that

so that means that our missing third term for a perfect square trinomial is simply 1/2, now we'll go to our good friend Mr Zero, if we add (1/2)², we have to also subtract (1/2)², because all we're really doing is borrowing from Zero, so we'll be including then +(1/2)² and -(1/2)², keeping in mind that 1/4 - 1/4 = 0, so let's do that.
![-3~~ = ~~-2\left[ x^2-x+\left( \cfrac{1}{2} \right)^2 ~~ - ~~\left( \cfrac{1}{2} \right)^2\right]\implies -3=-2\left(x^2-x+\cfrac{1}{4}-\cfrac{1}{4} \right) \\\\\\ -3=-2\left(x^2-x+\cfrac{1}{4} \right)+(-2)-\cfrac{1}{4}\implies -3=-2\left(x^2-x+\cfrac{1}{4} \right)+\cfrac{1}{2} \\\\\\ -3-\cfrac{1}{2}=-2\left(x^2-x+\cfrac{1}{4} \right)\implies -\cfrac{7}{2}=-2\left(x-\cfrac{1}{2} \right)^2\implies \cfrac{7}{4}=\left(x-\cfrac{1}{2} \right)^2](https://tex.z-dn.net/?f=-3~~%20%3D%20~~-2%5Cleft%5B%20x%5E2-x%2B%5Cleft%28%20%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%29%5E2%20~~%20-%20~~%5Cleft%28%20%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%29%5E2%5Cright%5D%5Cimplies%20-3%3D-2%5Cleft%28x%5E2-x%2B%5Ccfrac%7B1%7D%7B4%7D-%5Ccfrac%7B1%7D%7B4%7D%20%5Cright%29%20%5C%5C%5C%5C%5C%5C%20-3%3D-2%5Cleft%28x%5E2-x%2B%5Ccfrac%7B1%7D%7B4%7D%20%5Cright%29%2B%28-2%29-%5Ccfrac%7B1%7D%7B4%7D%5Cimplies%20-3%3D-2%5Cleft%28x%5E2-x%2B%5Ccfrac%7B1%7D%7B4%7D%20%5Cright%29%2B%5Ccfrac%7B1%7D%7B2%7D%20%5C%5C%5C%5C%5C%5C%20-3-%5Ccfrac%7B1%7D%7B2%7D%3D-2%5Cleft%28x%5E2-x%2B%5Ccfrac%7B1%7D%7B4%7D%20%5Cright%29%5Cimplies%20-%5Ccfrac%7B7%7D%7B2%7D%3D-2%5Cleft%28x-%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%29%5E2%5Cimplies%20%5Ccfrac%7B7%7D%7B4%7D%3D%5Cleft%28x-%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%29%5E2)

Answer:
-0.1511
Step-by-step explanation:
ln(0.985) is about -0.151136, which, rounded to four decimal places, is -0.1511. Hope this helps!