Answer:
UV=29
Step-by-step explanation:
In right triangles AQB and AVB,
∠AQB = ∠AVB ...(i) {Right angles}
∠QBA = ∠VBA ...(ii) {Given that they are equal}
We know that sum of all three angles in a triangle is equal to 180 degree. So wee can write sum equation for each triangle
∠AQB+∠QBA+∠BAQ=180 ...(iii)
∠AVB+∠VBA+∠BAV=180 ...(iv)
using (iii) and (iv)
∠AQB+∠QBA+∠BAQ=∠AVB+∠VBA+∠BAV
∠AVB+∠VBA+∠BAQ=∠AVB+∠VBA+∠BAV (using (i) and (ii))
∠BAQ=∠BAV...(v)
Now consider triangles AQB and AVB;
∠BAQ=∠BAV {from (v)}
∠QBA = ∠VBA {from (ii)}
AB=AB {common side}
So using ASA, triangles AQB and AVB are congruent.
We know that corresponding sides of congruent triangles are equal.
Hence
AQ=AV
5x+9=7x+1
9-1=7x-5x
8=2x
divide both sides by 2
4=x
Now plug value of x=4 into UV=7x+1
UV=7*4+1=28+1=29
<u>Hence UV=29 is final answer.</u>
Answer:Did he ever come back?
Step-by-step explanation:
Answer:
the probablity of rolling a one is 1/6
Step-by-step explanation:
Answer:
(E) 0.71
Step-by-step explanation:
Let's call A the event that a student has GPA of 3.5 or better, A' the event that a student has GPA lower than 3.5, B the event that a student is enrolled in at least one AP class and B' the event that a student is not taking any AP class.
So, the probability that the student has a GPA lower than 3.5 and is not taking any AP classes is calculated as:
P(A'∩B') = 1 - P(A∪B)
it means that the students that have a GPA lower than 3.5 and are not taking any AP classes are the complement of the students that have a GPA of 3.5 of better or are enrolled in at least one AP class.
Therefore, P(A∪B) is equal to:
P(A∪B) = P(A) + P(B) - P(A∩B)
Where the probability P(A) that a student has GPA of 3.5 or better is 0.25, the probability P(B) that a student is enrolled in at least one AP class is 0.16 and the probability P(A∩B) that a student has a GPA of 3.5 or better and is enrolled in at least one AP class is 0.12
So, P(A∪B) is equal to:
P(A∪B) = P(A) + P(B) - P(A∩B)
P(A∪B) = 0.25 + 0.16 - 0.12
P(A∪B) = 0.29
Finally, P(A'∩B') is equal to:
P(A'∩B') = 1 - P(A∪B)
P(A'∩B') = 1 - 0.29
P(A'∩B') = 0.71
Answer:
128 men
Step-by-step explanation:
90 × 28 × 8 = M × 18 × 15/2
M = 128