Answer: 4.27 *10^6 N/C
Explanation: In order to calculate the electric field along the axis of charged ring we have to use the following expression:
E=k*x/(a^2+x^2)^3/2 where a is the ring radius and x the distance to the point measured from the center of the ring.
Replacing the data we have:
E= (9* 10^9* 0.3* 50 * 10^-6)/(0.1^2+0.3^2)^3/2
then
E=4.27 * 10^6 N/C
I):final velocity=initial velocity+acceleration due to gravity*time of travel
Therefore,
v=0+9.8*3.1
=30.38 m/s
If by floor you meant water bed then i think there isn't enough info in the question.
Answer:
λ = 396.7 nm
Explanation:
For this exercise we use the diffraction ratio of a grating
d sin θ = m λ
in general the networks works in the first order m = 1
we can use trigonometry, remembering that in diffraction experiments the angles are small
tan θ = y / L
tan θ =
= sin θ
sin θ = y / L
we substitute
= m λ
with the initial data we look for the distance between the lines
d =
d = 1 656 10⁻⁹ 1.00 / 0.600
d = 1.09 10⁻⁶ m
for the unknown lamp we look for the wavelength
λ = d y / L m
λ = 1.09 10⁻⁶ 0.364 / 1.00 1
λ = 3.9676 10⁻⁷ m
λ = 3.967 10⁻⁷ m
we reduce nm
λ = 396.7 nm
Answer:
- Waves with higher amplitude transfer HIGHER energy.
- Waves with higher frequency transfer HIGHER energy.
Answer:
No
Explanation:
The force of tension exerted by the string on the rock acts as centripetal force, so its direction is always towards the centre of the circle.
However, the direction of motion of the rock is always tangential to the circle: this means that the force is always perpendicular to the direction of motion of the rock.
As we know, the work done by a force on an object is

where
F is the magnitude of the force
d is the displacement of the object
is the angle between the force and the displacement
In this situation, F and d are perpendicular, so
, therefore
and the work done is zero:
