<span>Volume of air in the balloon 1.01 x 10^6 L
Density of air is 1.20 g/l
Mass = Density X Volume
So mass of the air in the Balloon= ( 1.01 x 10^6) X 1.20 = 1.212 x 10^6 g
As the air is heated, the volume of air in the balloon expands to 1.10x 10^6 L
Density= Mass/ voume
So the Density of heated air = 1.212 x 10^6/ 1.10x 10^6 = 1.101 g/l
The answer is 1.101 g/l.</span>
The solution to the problem is as follows:
<span>Average = 80
So Sum = 80 * 5 = 400
Mode = 88, so two results are 88 (if three results were 88, then the median would be 88).
Three results are 81, 88, and 88.
That leaves 143. We could still have one 81 score, so that leaves the lowest score as 62.
Greg is in a car at the top of a roller-coaster ride. The distance, d, of the car from the ground as the car descends is determined by the equation d = 144 - 16t2, where t is the number of seconds it takes the car to travel down to each point on the ride. How many seconds will it take Greg to reach the ground?
d = 144 - 16t2
0 = 144 - 16t2
16t^2=144
t^2=9
t=3</span>
Answer:
Explanation:
After the collision velocity of the particle is (4î - 3ĵ)m/s . ... A particle of mass 1 kg moving with a velocity of (4i^−3j^)m/s collides with a fixed surface. ... Perfectly inelastic. D ... The common velocity of the blocks after collision is: ... A ball falls from a height of 5 m and strikes the roof of a lift. ... Stay upto date with our Newsletter! i know this is not right but just here for points see ya loser
The solution would be like
this for this specific problem:
<span>
The force on m is:</span>
<span>
GMm / x^2 + Gm(2m) / L^2 = 2[Gm (2m) / L^2] ->
1
The force on 2m is:</span>
<span>
GM(2m) / (L - x)^2 + Gm(2m) / L^2 = 2[Gm (2m) / L^2]
-> 2
From (1), you’ll get M = 2mx^2 / L^2 and from
(2) you get M = m(L - x)^2 / L^2
Since the Ms are the same, then
2mx^2 / L^2 = m(L - x)^2 / L^2
2x^2 = (L - x)^2
xsqrt2 = L - x
x(1 + sqrt2) = L
x = L / (sqrt2 + 1) From here, we rationalize.
x = L(sqrt2 - 1) / (sqrt2 + 1)(sqrt2 - 1)
x = L(sqrt2 - 1) / (2 - 1)
x = L(sqrt2 - 1) </span>
= 0.414L
<span>Therefore, the third particle should be located the 0.414L x
axis so that the magnitude of the gravitational force on both particle 1 and
particle 2 doubles.</span>
Integrating the velocity equation, we will see that the position equation is:

<h3>How to get the position equation of the particle?</h3>
Let the velocity of the particle is:

To get the position equation we just need to integrate the above equation:


Then:


Replacing that in our integral we get:


Where C is a constant of integration.
Now we remember that 
Then we have:

To find the value of C, we use the fact that f(0) = 0.

C = -1 / 3
Then the position function is:

Integrating the velocity equation, we will see that the position equation is:

To learn more about motion equations, refer to:
brainly.com/question/19365526
#SPJ4