Answer:
Just as wavelength and frequency are related to light, they are also related to energy. The shorter the wavelengths and higher the frequency corresponds with greater energy. So the longer the wavelengths and lower the frequency results in lower energy. The energy equation is E = hν.
Explanation:
I think the correct answer from the choices listed above is the last option. The conclusion about the star would be that it is moving away from Earth. L<span>engthening of the waves means that wavelength getting larger </span>this occurs when a body giving off light is moving away. Hope this answers the question.
The concept used to solve this problem is that given in the kinematic equations of motion. From theory we know that the change in velocities of a body is equivalent to twice the distance traveled by acceleration, in other words:

Where,
Final and initial velocity
a = Acceleration
x = Displacement
For the given case, the displacement is equivalent to the height (x = h) and the acceleration is the same gravitational acceleration (a = g). In turn we do not have initial speed therefore


Our values are given as


Replacing we have that,



Therefore the speed with which the liquid sulfur left the volcano is 529.15m/s
If the boat is i travling at 10 m/s and the river is 8.0 m/s the boats speed is 18.0 m/s
Answer:
The equation for the object's displacement is 
Explanation:
Given:
m = 16 lb
δ = 3 in
The stiffness is:

The angular speed is:

The damping force is:

Where
FD = 20 lb
u = 4 ft/s = 48 in/s
Replacing:

The critical damping is equal:

Like cc>c the system is undamped
The equilibrium expression is:
