1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ruslelena [56]
3 years ago
8

3) Graph y=-x2+3 State the vertex and axis of symmetry

Mathematics
2 answers:
klasskru [66]3 years ago
8 0
Vertex (0,3)
Axis of symmetry x=0
GaryK [48]3 years ago
5 0
Since the vertex and the axis of symmetry have already been stated by another answer giver, here is the equation graphed :)

You might be interested in
A researcher wishes to be 95 confident that her estimate of the true proportion
marysya [2.9K]
The answer would be 95/100 = 0/100 I hope this helped ^^
4 0
3 years ago
The height of a model rocket, H(t), is a function of the time since it was<br> launched, t.
laiz [17]
I believe its either A or C
7 0
3 years ago
What is the value of q in the equation?<br> A) -10/7<br> B) 10/7<br> C)6<br> D) 10
cricket20 [7]

q=10

Remove the radical by raising each side to the index of the radical

Hope this helps!

6 0
3 years ago
Read 2 more answers
Complete the square to transform the quadratic equation into the form
faltersainse [42]

The square of a binomial is written like

(x\pm a)^2 = x^2\pm 2ax + a^2

In your case, you have 2ax=-8x, which implies a=-4

So, we want to write

(x-4)^2 = x^2-8x+16

But our left hand side is

x^2-8x-10

If we add 26 to both sides, we have

x^2 - 8x - 10 +26 = 18+26 \iff x^2-8x+16=44 \iff (x-4)^2=44

7 0
3 years ago
If 13cos theta -5=0 find sin theta +cos theta / sin theta -cos theta​
Ivahew [28]

Step-by-step explanation:

<h3>Need to FinD :</h3>

  • We have to find the value of (sinθ + cosθ)/(sinθ - cosθ), when 13 cosθ - 5 = 0.

\red{\frak{Given}} \begin{cases} & \sf {13\ cos \theta\ -\ 5\ =\ 0\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \big\lgroup Can\ also\ be\ written\ as \big\rgroup} \\ & \sf {cos \theta\ =\ {\footnotesize{\dfrac{5}{13}}}} \end{cases}

Here, we're asked to find out the value of (sinθ + cosθ)/(sinθ - cosθ), when 13 cosθ - 5 = 0. In order to find the solution we're gonna use trigonometric ratios to find the value of sinθ and cosθ. Let us consider, a right angled triangle, say PQR.

Where,

  • PQ = Opposite side
  • QR = Adjacent side
  • RP = Hypotenuse
  • ∠Q = 90°
  • ∠C = θ

As we know that, 13 cosθ - 5 = 0 which is stated in the question. So, it can also be written as cosθ = 5/13. As per the cosine ratio, we know that,

\rightarrow {\underline{\boxed{\red{\sf{cos \theta\ =\ \dfrac{Adjacent\ side}{Hypotenuse}}}}}}

Since, we know that,

  • cosθ = 5/13
  • QR (Adjacent side) = 5
  • RP (Hypotenuse) = 13

So, we will find the PQ (Opposite side) in order to estimate the value of sinθ. So, by using the Pythagoras Theorem, we will find the PQ.

Therefore,

\red \bigstar {\underline{\underline{\pmb{\sf{According\ to\ Question:-}}}}}

\rule{200}{3}

\sf \dashrightarrow {(PQ)^2\ +\ (QR)^2\ =\ (RP)^2} \\ \\ \\ \sf \dashrightarrow {(PQ)^2\ +\ (5)^2\ =\ (13)^2} \\ \\ \\ \sf \dashrightarrow {(PQ)^2\ +\ 25\ =\ 169} \\ \\ \\ \sf \dashrightarrow {(PQ)^2\ =\ 169\ -\ 25} \\ \\ \\ \sf \dashrightarrow {(PQ)^2\ =\ 144} \\ \\ \\ \sf \dashrightarrow {PQ\ =\ \sqrt{144}} \\ \\ \\ \dashrightarrow {\underbrace{\boxed{\pink{\frak{PQ\ (Opposite\ side)\ =\ 12}}}}_{\sf \blue{\tiny{Required\ value}}}}

∴ Hence, the value of PQ (Opposite side) is 12. Now, in order to determine it's value, we will use the sine ratio.

\rightarrow {\underline{\boxed{\red{\sf{sin \theta\ =\ \dfrac{Opposite\ side}{Hypotenuse}}}}}}

Where,

  • Opposite side = 12
  • Hypotenuse = 13

Therefore,

\sf \rightarrow {sin \theta\ =\ \dfrac{12}{13}}

Now, we have the values of sinθ and cosθ, that are 12/13 and 5/13 respectively. Now, finally we will find out the value of the following.

\rightarrow {\underline{\boxed{\red{\sf{\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}}}}}}

  • By substituting the values, we get,

\rule{200}{3}

\sf \dashrightarrow {\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}\ =\ {\footnotesize{\dfrac{\Big( \dfrac{12}{13}\ +\ \dfrac{5}{13} \Big)}{\Big( \dfrac{12}{13}\ -\ \dfrac{5}{13} \Big)}}}} \\ \\ \\ \sf \dashrightarrow {\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}\ =\ {\footnotesize{\dfrac{\dfrac{17}{13}}{\dfrac{7}{13}}}}} \\ \\ \\ \sf \dashrightarrow {\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}\ =\ \dfrac{17}{13} \times \dfrac{13}{7}} \\ \\ \\ \sf \dashrightarrow {\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}\ =\ \dfrac{17}{\cancel{13}} \times \dfrac{\cancel{13}}{7}} \\ \\ \\ \dashrightarrow {\underbrace{\boxed{\pink{\frak{\dfrac{sin \theta\ +\ cos \theta}{sin \theta\ -\ cos \theta}\ =\ \dfrac{17}{7}}}}}_{\sf \blue{\tiny{Required\ value}}}}

∴ Hence, the required answer is 17/7.

6 0
3 years ago
Other questions:
  • What is 3(x+3)=2(x12) can u help me
    6·1 answer
  • How is 0.55 you're answer for 4.4 divided by 8?
    5·1 answer
  • What is 0.0473 as a fraction?
    9·2 answers
  • Rachel and Hugo sorted 236 crayons into boxes for a local arts project. Each boz had 10 crayons. How many crayons were left over
    8·1 answer
  • WHy Is ThIs oNe kAnSas bUt ThIs OnE iS nOt aRkAnsAs
    10·1 answer
  • Marcus is designing a structure to hold up scenery for the school play. The structure must be a right triangle.
    7·1 answer
  • T divided by -4 equals 9
    7·1 answer
  • Type the correct answer in the box. Use numerals instead of words.
    10·1 answer
  • How do you round 3.36 to the tenths place
    15·2 answers
  • Please help me with this math problem!! NO LINKS!!! Will mark brainliest!! :)
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!