Acetic acid activates the bromine and makes it a better electrophile.
<h3>What is bromination?</h3>
When a substance undergoes bromination, bromine is added to the compound as a result of the chemical reaction. After bromination, the result will have different properties from the initial reactant.
<h3>Why is 15M acetic acid used as a solvent for bromination?</h3>
DCM (dichloromethane) requires more time. Acetic acid has protons that can give one of the Br (bromine) a positive charge and activate it. There is a brief loss of aromaticity that calls for high energy activation.
Refer to the attached image for bromination reaction.
Learn more about bromination here:
brainly.com/question/26428023
#SPJ4
E. HCI
Source:
The Internet
The Mass of oxygen in isolated sample is 8.6 g
<h3>What is the
Law of Constant composition?</h3>
The law of constant composition states that pure samples of the same compound contain the same element in the same ratio by mass irrespective of the source from which the compound is obtained.
Considering the given ascorbic acid samples:
Laboratory sample contains 1.50 gg of carbon and 2.00 gg of oxygen
mass ratio of oxygen to carbon is 2 : 1.5
Isolated sample will contain 2/1.5 * 6.45 g of oxygen.
Mass of oxygen in isolated sample = 8.6 g
In conclusion, the mass of oxygen is determined from the mass ratio of oxygen and carbon in the compound.
Learn more about the Law of Constant composition at: brainly.com/question/1557481
#SPJ1
Note that the complete question is given below:
A sample of ascorbic acid (vitamin C) is synthesized in the laboratory. It contains 1.50 g of carbon and 2.00 g of oxygen. Another sample of ascorbic acid isolated from citrus fruits contains 6.45 gg of carbon. According to the law of constant composition, how many grams of oxygen does this isolated sample contain?
Express the answer in grams to three significant figures.
8.47 g
It would be D
Because a covelant compound forms when 2 non metal atoms bond
Answer:
A
Explanation:
A chemical change is when a new substance is created, which often has its own chemical properties, so A is the correct answer.