Answer:
ΔH is negative and ΔS is negative.
Explanation:
Endothermic reaction -
The type of reaction in which energy is absorbed in the form of heat is known as endothermic reaction .
The reaction mixture usually get cooled after the reaction .( temperature decreases ) .
The sign of ΔH of an Endothermic reaction is positive .
<u>For the of process of freezing the liquid ethanol , energy in the form of heat is released and hence , exothermic reaction ΔH is negative .</u>
<u>In the process of freezing , liquid is converted to solid , i.e. , the randomness reduces , and hence , entropy also decreases , hence , ΔS is negative .</u>
Copper. thats the way copper oxidized. like the statue of liberty
The question is incomplete, complete question is :
In the Haber reaction, patented by German chemist Fritz Haber in 1908, dinitrogen gas combines with dihydrogen gas to produce gaseous ammonia. This reaction is now the first step taken to make most of the world's fertilizer. Suppose a chemical engineer studying a new catalyst for the Haber reaction finds that 348 liters per second of dinitrogen are consumed when the reaction is run at 205°C and 0.72 atm. Calculate the rate at which ammonia is being produced.
Answer:
The rate of production of ammonia is 217.08 grams per second.
Explanation:

Volume of dinitrogen used in a second = 348 L
Temperature of the gas = T = 205°C = 205+273 K = 478 K
Pressure of the gas = P = 0.72 atm
Moles of dinitrogen = n

According to reaction, 1 mole of dinitriogen gives 2 mole of ammonia.Then 6.385 moles of dinitrogen will give:

Mass of 12.769 moles of ammonia;
12.769 mol 17 g/mol = 217.08 g
217.08 grams of ammonia is produced per second.So, the rate of production of ammonia is 217.08 grams per second.
Answer:
If it is still too liquid, add pasta, rice, tapioca or potato to absorb the excess of liquid. Get inspired by recipes you can make with the ingredients you have at home today.
Explanation:
Thomson suggested the model of atom which was a sphere of positive matter within which electronic forces determined the positioning of the corpuscles. The corpuscles were distributed in a uniform sea of positive charge. This was so-called "plum pudding" model.
Answer: C ) Thomson