Answer:
(the statement does not appear to be true)
Step-by-step explanation:
I don't think the statement is true, but you CAN compute the intercepted arc from the angle.
Note that BFDG is a convex quadrilateral, so its angles sum to 360. Since we know the inscribed circle touches the angle tangentially, angles BFD and BGD are both right angles, with a measure of 90 degrees.
Therefore, adding the angles together, we have:
alpha + 90 + 90 + <FDG = 360
Therefore, <FDG, the inscribed angle, is 180-alpha (ie, supplementary to alpha)
Answer:
A subway train arrives every 10 minutes during rush hour. We are interested in the length of time a commuter must wait for a train to arrive. The time follows a uniform distribution. Find u, which is the average length of time a commuter must wait for a train to arrive. Round to one decimal place. = 3
To obtain the total surface we have to calculate the surface of the 4 triangles and add up the areas (remember that the area of a triangle is (b*h)/2 , b is the base, h is the height ).
We will caculate first the area of the base triangle for that we considerer the fact that it is an equilateral triangle with sides of lenght 6 cm, now we calculate the height, I am going to draw please wait a moment
using the pythagorean theorem we have that
![\begin{gathered} h^2=6^2cm^2-3^2\operatorname{cm}=27cm^2 \\ h=\text{ }\sqrt[]{27\text{ }}cm \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20h%5E2%3D6%5E2cm%5E2-3%5E2%5Coperatorname%7Bcm%7D%3D27cm%5E2%20%5C%5C%20h%3D%5Ctext%7B%20%7D%5Csqrt%5B%5D%7B27%5Ctext%7B%20%7D%7Dcm%20%5Cend%7Bgathered%7D)
Then, the area of the triangle is 6*h/2 = 3h = 15.59 cm^2.
Now we calculate the area of the other 3 triangles, notice that those triangles have the same base and height so we will calculate for one of them and multiply by 3. From the image we know that the height is 15cm and the base is 6 cm so the area is 45cm^2, and 45*3 cm^2 = 135cm^2.
Finally we add up all the areas:
Answer:
y = 10/3x - 18
Step-by-step explanation:
1. Take the reciprocal of the slope given to you, 3/10 -> 10/3
2. Write your new equation with the new slope in slope-intercept form: y=10/3x+b
3. Use the point given to find your y-intercept / b: -8 = (10/3)(3)+b
-8 = 10 + b
-18 = b
4. Plug b back into your new equation. y = 10/3x - 18