Answer:
c) -x^3 + x^2 - 1
Step-by-step explanation:
Given: u (x) = x^5 - x^4 +x^2 and v(x) = -x^2
(u/v)(x) = u(x)/v(x)
Now plug in the given functions in the above formula, we get
= (x^5 - x^4 + x^2) / -x^2
We can factorize the numerator.
In x^5 - x^4 + x^2. the common factor is x^2, so we can take it out and write the remaining terms in the parenthesis.
= x^2 (x^3 - x^2 + 1) / - x^2
Now we gave x^2 both in the numerator and in the denominator, we can cancel it out.
(u/v)(x) = (x^3 - x^2 + 1) / -1
When we dividing the numerator by -1, we get
(u/v)(x) = -x^3 + x^2 - 1
Answer: c) -x^3 + x^2 - 1
Hope you will understand the concept.
Thank you.
s = 2(lw + lh + wh)
Divide each side by 2 : s/2 = lw + lh + wh
Subtract 'lh' from each side: s/2 - lh = lw + wh
Combine the 'w' terms: s/2 - lh = w(l + h)
Divide each side by (l + h): (s/2 - lh) / (l + h) = w
Answer:
D
Step-by-step explanation:
The equation of a circle centred at the origin is
x² + y² = r² ( where r is the radius )
Here r = 15, thus
x² + y² = 15² , that is
x² + y² = 225 → D
Answer:
x = 15/8
Step-by-step explanation:
x/3 = 5/8
Using cross products
8x = 3*5
8x = 15
Divide each side by 8
8x/8 = 15/8
x = 15/8
set them equal to their sum. which in this case is 141 then solve for x and plug it into your original equation to get your answer.