Sqare √113
113
10^2=100, so √100=10
11^2=121 so √121=11
√100<√113<√121
so therfor
10<√113<11
it is between 10 and 11
1) slope=3 and y-int.=-5
2) slope=2 and y-int.=-6
3) slope=-6 and y-int.=1/2
4) slope=-7 and y-int.=5/2
5) slope=1/2 and y-int.=7
6) slope=3/4 and y-int.=8
7) slope=-2/3 and y-int.=-1/3
8) slope=-1/8 and y-int.=-3/8
9) slope=2/3 and y-int.=5
10) slope=-2/7 and y-int.=-1
11) slope=-3 and y-int.=6
12) slope=4 and y-int.=7
Hope this helps!
Answer:
d) Squared differences between actual and predicted Y values.
Step-by-step explanation:
Regression is called "least squares" regression line. The line takes the form = a + b*X where a and b are both constants. Value of Y and X is specific value of independent variable.Such formula could be used to generate values of given value X.
For example,
suppose a = 10 and b = 7. If X is 10, then predicted value for Y of 45 (from 10 + 5*7). It turns out that with any two variables X and Y. In other words, there exists one formula that will produce the best, or most accurate predictions for Y given X. Any other equation would not fit as well and would predict Y with more error. That equation is called the least squares regression equation.
It minimize the squared difference between actual and predicted value.
Multiplying a number by 4/5 and then dividing by 2/5 is the same as multiplying by 2