The process releases energy and consequently we classify it as exothermic. (d) a person running releases warmness as muscle mass paintings. therefore, the procedure is exothermic.
d) Exothermic, heat is released as a person runs and muscle groups perform work.
A chemical response or bodily exchange is exothermic if warmth is released by using the system into the environment. Because the surroundings are gaining heat from the system, the temperature of the surroundings increases. The sign of q for an exothermic procedure is -ve due to the fact the device is dropping heat.
Some other examples of exothermic reactions:
1)Snow Formation in Clouds.
2)Burning of a Candle.
3)Rusting of Iron.
4)Formation of Ion Pairs.
5)response of strong Acid and Water. etc...
Learn more about exothermic reactions here: brainly.com/question/14018816
#SPJ4
Answer:
b. lithium
Explanation:
Li the least likely, to lose an electron.
Answer:
1.) AgNO₃
2.) 0.563 moles AgBr
Explanation:
The limiting reagent is the reagent that is used up completely during a reaction. It can be identified by calculating which reactant produces the smallest amount of product. This can be done by determining the number of moles of each reagent (via molarity conversion). and then converting it to moles of the product (via mole-to-mole ratio).
AgNO₃ (aq) + KBr (aq) ---> AgBr (s) + KNO₃ (aq)
Molarity (M) = moles / liters
100 mL = 1 L
AgNO₃
45.0 mL / 100 = 45.0 L
1.25 M = ? moles / 0.450 L
? moles = 0.563 moles
KBr
75.0 mL / 100 = 0.750 L
0.800 M = ? moles / 0.750 L
? moles = 0.600 moles
In this case, there is no need to use the mole-to-mole ratio because all of the coefficients are one in the reaction (the amount of the limiting reagent used is the same amount of product produced). Since AgNO₃ produces the smaller amount of product, it is the limiting reagent.
<u><em>Answer:</em></u>
- The correct structure of phosphoric acid is A.
<u><em>Explanation</em></u>
- P should form five covalent bonds. In this strcuture P form three single bond with 3-hydroxyl groups while one single bondformed with oxygen. As oxygen will form two bonds , it carry negative charge, while P should form five bond but here it is forming 4 bonds due to this P has positive charge but overall structure contain neutral charge due to cancellation of positive and negative charges. Beside this, there are 3 H, Four O and One P according to formula H3PO4.
Answer:
0.15g
Explanation:
Given parameters:
Number of molecules of water = 1.2 x 10²¹ molecules
Unknown:
Mass of SnO₂ = ?
Solution:
To solve this problem, we have to work from the known to the unknown specie;
SnO₂ + 2H₂ → Sn + 2H₂O
Ensure that the equation given is balanced;
Now,
the known species is water;
6.02 x 10²³ molecules of water = 1 mole
1.2 x 10²¹ molecules of water =
= 0.2 x 10⁻²moles
Number of moles of water = 0.002moles
From the balanced chemical equation:
2 mole of water is produced from 1 mole of SnO₂
0.002 moles of water will be produced from
= 0.001moles
To find the mass;
Mass = number of moles x molar mass
Molar mass of SnO₂ = 118.7 + 2(16) = 150.7g/mol
Mass = 0.001 x 150.7 = 0.15g