Answer:
green light have high energy
Explanation:
We have given the wavelength of the red light 
Speed of the light 
The energy of the signal is given by 
The frequency of the green light is given by:

So energy 
So green light have high energy
Use Newton's second law to determine the acceleration being applied to the sled. There are three forces at work on the sled (its weight, the force normal to the ground, and friction) but two of them cancel, leaving friction as the only effective force. This vector is pointed in the opposite direction of the sled's movement, so if we take the direction of its movement to be the positive axis, we would find the acceleration due to the friction to be

Now we use the formula

to find the distance it travels. The sled comes to a rest, so
, and let's take the starting position
to be the origin. Then the distance traveled
is

The other lights wouldn't be affected?
:/
In a parallel circuit, the equivalent resistance is the reciprocal of (the sum of the individual reciprocals).
1/R = 1/10 + 1/21 + 1/13
1/R = 0.225 mhos
R = 4.45 ohms
I = V / R
The total current out of the battery is
I = (9v)/(4.45ohms)
I = 2.02 Amperes
As the total current leaves the battery, it splits into 3 paths, and each resistor gets part of it. The 10ohm resistor gets the most current; the 21ohm resistor gets the least current. After flowing through the resistors, the 3 currents join and add up to 2.02 Amperes again, and the same current returns to the battery.
Each resistor has the same 9v of EMF across it.