Explanation:
The frequency of radio waves is 1.667 GHz
One portion of the same wave front travels 1.260 mm farther than the other before the two signals are combined.
There are two conditions for interference either constructive or destructive.
For constructive interference , the path difference is n times of wavelength and for destructive interference, the path difference is (n+1/2) times of wavelength
We can find wavelength in this case as follows :

If we divide path difference by wavelength,

It means that the path difference is 7 times of the wavelength. it means the two waves combine constructively and the value of m for the path difference between the two signals is 7.
Answer:
A.) 42.7 m/s
B.) 0.33 m/s^2
C.) 90 kg
Explanation:
A.) If Justin races his Chevy S-10 down highway 37 north for 2,560 meters in 60 seconds, what is his velocity?
Velocity = displacement/time
Velocity = 2560/60
Velocity = 42.67 m/s
B.) The Chevy S-10 started rounding at 10 meters per hour. What is the acceleration at 30 seconds on the highway?
Acceleration = velocity/time
Acceleration = 10/30
Acceleration = 0.33 m/s^2
C.) The S-10 has a force of 30 N. What is the mass of the car?
Force = mass × acceleration
30 = mass × 0.33
Mass = 30/ 0.33
Mass = 90 kg
That would be
0 degrees Celsius aka the melting point of water.... If you look at the diagram I attached you notice that at 0 degrees Celsius it is flat, this is because much heat is needed at this point for water to rise to 1 degree... It is the same for the boiling point (100)<span />
The periodic table is in increasing atomic mass. Hope this helped.
Answer:
As the concentration of a solute in a solution increases, the freezing point of the solution <u><em>decrease </em></u>and the vapor pressure of the solution <em><u>decrease </u></em>.
Explanation:
Depression in freezing point :

where,
=depression in freezing point =
= freezing point constant
m = molality ( moles per kg of solvent) of the solution
As we can see that from the formula that higher the molality of the solution is directly proportionate to the depression in freezing point which means that:
- If molality of the solution in high the depression in freezing point of the solution will be more.
- If molality of the solution in low the depression in freezing point of teh solution will be lower .
Relative lowering in vapor pressure of the solution is given by :

= Vapor pressure of pure solvent
= Vapor pressure of solution
= Mole fraction of solute

Vapor pressure of the solution is inversely proportional to the mole fraction of solute.
- Higher the concentration of solute more will the be solute's mole fraction and decrease in vapor pressure of the solution will be observed.
- lower the concentration of solute more will the be solute's mole fraction and increase in vapor pressure of the solution will be observed.