Answer:
486nm
Explanation:
in order for an electron to transit from one level to another, the wavelength emitted is given by Rydberg Equation which states that
![\frac{1}{wavelength}=R.[\frac{1}{n_{f}^{2} } -\frac{1}{n_{i}^{2} }] \\n_{f}=2\\n_{i}=4\\R=Rydberg constant =1.097*10^{7}m^{-1}\\subtitiute \\\frac{1}{wavelength}=1.097*10^{7}[\frac{1}{2^{2} } -\frac{1}{4^{2}}]\\\frac{1}{wavelength}= 1.097*10^{7}*0.1875\\\frac{1}{wavelength}= 2.06*10^{6}\\wavelength=4.86*10{-7}m\\wavelength= 486nm\\](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7Bwavelength%7D%3DR.%5B%5Cfrac%7B1%7D%7Bn_%7Bf%7D%5E%7B2%7D%20%7D%20-%5Cfrac%7B1%7D%7Bn_%7Bi%7D%5E%7B2%7D%20%7D%5D%20%5C%5Cn_%7Bf%7D%3D2%5C%5Cn_%7Bi%7D%3D4%5C%5CR%3DRydberg%20constant%20%3D1.097%2A10%5E%7B7%7Dm%5E%7B-1%7D%5C%5Csubtitiute%20%5C%5C%5Cfrac%7B1%7D%7Bwavelength%7D%3D1.097%2A10%5E%7B7%7D%5B%5Cfrac%7B1%7D%7B2%5E%7B2%7D%20%7D%20-%5Cfrac%7B1%7D%7B4%5E%7B2%7D%7D%5D%5C%5C%5Cfrac%7B1%7D%7Bwavelength%7D%3D%201.097%2A10%5E%7B7%7D%2A0.1875%5C%5C%5Cfrac%7B1%7D%7Bwavelength%7D%3D%202.06%2A10%5E%7B6%7D%5C%5Cwavelength%3D4.86%2A10%7B-7%7Dm%5C%5Cwavelength%3D%20486nm%5C%5C)
Hence the photon must possess a wavelength of 486nm in order to send the electron to the n=4 state
Answer:
Explanation:
Using the atomic mass of pluonium atoms (244 g/mol), you can calculate the number of atoms in 47.0 g. Then, knowing that each plutonium atom has 96 protons, you calculate the number of protons in the 47.0 g sample. Finally, using the positive charge of one proton, you calculate the total positive charge in the 47.0 g of plutonium.
<u>1. Number of atoms of plutonium in 47.0 g</u>
- Number of moles = mass / atomic mass = 47.0 g / 244 = 0.1926 moles
- Number of atoms = number of moles × 6.022 × 10²³ atoms/mol
- Number of atoms = 0.1926 mol × 6.022 × 10²³ atoms/mol = 1.15998×10²³ atoms
<u>2. Number of protons</u>
- Number of protons = 1.15998×10²³ atoms × 96 protons/atom = 1.11385×10²⁵ protons
<u>3. Charge</u>
<u />
- Charge = charge of one proton × number of protons
- Charge = 1.602×10⁻¹⁹ C/proton × 1.11385×10²⁵ protons = 1.78×10⁶C
Answer:
-30°C
Explanation:
F-32/180 =C-0/100
or, -22-32/180=C/100
or, -54/180*100=C
or, -0.3*100=C
therefore, C= -30
-22°F = -30°C
PLEASE MARK ME AS BRAINLIEST!
Answer:
λ = 3.2 x 10⁻⁷ m = 320 nm
Explanation:
The relationship between the velocity of electromagnetic waves (UV rays) and the their frequency is:
v = fλ
where,
v = c = speed of the electromagnetic waves (UV rays) = speed of light
c = 3 x 10⁸ m/s
f = frequency of the electromagnetic waves (UV rays) = 9.38 x 10¹⁴ Hz
λ = wavelength of the electromagnetic waves (UV rays) = ?
Therefore, substituting the values in the relation, we get:
3 x 10⁸ m/s = (9.38 x 10¹⁴ Hz)(λ)
λ = (3 x 10⁸ m/s)/(9.38 x 10¹⁴ Hz)
<u>λ = 3.2 x 10⁻⁷ m = 320 nm</u>
So, the radiation of <u>320 nm</u> wavelength is absorbed by Ozone.
<h2>~<u>Solution</u> :-</h2>
- Here, the <u>moment arm</u> is defined as follows;
The magnitude of two forces, which when acting at right angle produce resultant force of VlOkg and when acting at 60° produce resultant of Vl3 kg. These forces are D. gravitational force of attraction towards the centre of the earth. A sample of metal weighs 219 gms in air, 180 gms in water, 120 gms in an <em>unknown fluid</em>.
