Answer: 1. halve
2. halve
3. double
Explanation:
The relationship between wavelength and energy of the wave follows the equation:
E= energy
= wavelength of the wave
h = Planck's constant
c = speed of light
Thus as wavelength and energy have inverse realation, when wavelength will halve , energy will double.
2. The between wavenumber and energy of the wave follows the equation:
E= energy
= wavenumber of the wave
h = Planck's constant
c = speed of light
Thus as wavenumber and energy have direct relation, when wavenumber will halve , energy will be halved.
3. The relationship between energy and frequency of the wave follows the equation:
where
E = energy
h = Planck's constant
= frequency of the wave
Thus as frequency and energy have direct realation, when frequency will double , energy will double.
I believe the answer is compound B may have a lower molecular weight compared to compound A.
At the same temperature, lighter particles of a compound have a higher average speeds than do heavier particles of another compound. Thus, particles of compound B are lighter than those of compound A and thus they have a higher average speed, hence evaporating faster compared to compound A.
Answer:
Example of a fusion dish: combination of smoked salmon wrapped in rice paper, with avocado, cucumber and crab sticks. Fusion cuisine is cuisine that combines elements of different culinary traditions that originate from different countries, regions, or cultures.
117.22 g are needed to react with an excess of Fe2O3 to produce 156.2 g of Fe.
Explanation:
Moles of Fe = Mass of Fe in grams / Atomic weight of Fe
= 156.2 / 55.847
Moles of Fe = 2.79.
The ratio between CO and Fe id 3 : 2.
Moles CO needed = 2.79 * (3 / 2)
= 4.185.
To calculate Atomic weight of CO,
Atomic weight of carbon = 12.011
Atomic weight of oxygen= 15.9994
Atomic weight of CO = 12.011 + 15.9994 = 28.01 g / mol.
Mass of CO = 4.185 * 28.01 = 117.22 g.