Explanation:
Molar mass of
= 39.1 + 35.5 + 3(16.0) = 122.6 g
Molar mass of KCl = 39.1 + 35.5 = 74.6 g
Molar mass of
= 32.0 g
According to the equation, 2 moles of
reacts to give 3 moles of oxygen.
Therefore, 2 (122.6) = 245.2 g of
will give 3 (32.0) = 96.0 g of oxygen. Thus, 245.2 g of
gives 96.0 g of oxygen.
(a) Calculate the amount of oxygen given by 2.72 g of
as follows.
of
(b) Calculate the amount of oxygen given by 0.361 g of
as follows.
of
c) Calculate the amount of oxygen given by 83.6 kg
as follows.
of 
Convert kg into grams as follows.
= 32731 g of 
(d) Calculate the amount of oxygen given by 22.5 mg of
as follows.

Convert mg into grams as follows.
of 
Answer:

Explanation:
We are asked to find how many moles are in 4.8 × 10²³ fluorine atoms. We convert atoms to moles using Avogadro's Number or 6.022 × 10²³. This is the number of particles (atoms, molecules, formula units, etc.) in 1 mole of a substance. In this case, the particles are atoms of fluorine.
We will convert using dimensional analysis and set up a ratio using Avogadro's Number.

We are converting 4.8 × 10²³ fluorine atoms to moles, so we multiply the ratio by this number.

Flip the ratio so the units of atoms of fluorine cancel each other out.


Condense into 1 fraction.

Divide.

The original measurement of atoms has 2 significant figures, so our answer must have the same. For the number we found, that is the hundredths place. The 7 in the thousandths tells us to round the 9 in the hundredths place up to a 0. Then, we also have to round the 7 in the tenths place up to an 8.

4.8 × 10²³ fluorine atoms are equal to <u>0.80 moles of fluorine.</u>
Not sure what you are asking. I have two possible answers though...
It could either be more negatively charged, or valence electrons.
The more away from the nucleus a electron is, the more negatively charged it is.
The electrons on the outermost electron shell is valence electrons.
Again, I don't know what you were asking, but one of these answers may be correct.
Answer:
Molarity of a 5.0 L solution that contains 0.5 moles of KNO3 is 0.1 M
Explanation:
Molarity : It is used to express the concentration of the solution and defined as total moles of solute present in one liter of solution .

Moles of KNO3 = 0.5 (given)
Volume of solution = 5.0 L
Substitute the value in given formula ,
on calculation,
Molarity = 0.1 mol/L
Molarity = 0.1 M
(M = mol/L)