<h2>
Answer:</h2>
800gm
<h2>
Explanation:</h2>
Archimedes principle states that when an object is immersed in a liquid there is an apparent loss of weight of the object. This apparent loss of weight is also the upthrust experienced by the liquid. The upthrust is equal to the weight of the liquid displaced.
Following from the above statement, when the body of volume 100c.c is immersed in the water contained in the jar, the upthrust experienced is equal to the weight of the water displaced.
<em>Note: In the question, weight is measured just using the mass.</em>
Mass (m) is the product of density (ρ) of liquid (which is water in this case) and volume (v) of body immersed. i.e
m = ρ x v
Where;
ρ = 1 gm/cm³
v = 100c.c = 100cm³
=> m = 1 gm/cm³ x 100cm³
=> m = 100gm
Therefore the weight of water displaced is 100gm
Now, the weight of the water and jar after immersion is the sum of the weight of water and jar before immersion, and the weight of the water displaced. i.e
Weight of water and jar after immersion = 700gm + 100gm = 800gm
Answer:
Explanation:
When an object is heated then it becomes brighter and bluish compared to the initial condition. This happens because when an object is given heat then the electron in the ground state gets excited and reaches some higher state. After reaching a higher state electron make the transition to lower state and simultaneously exhibit the color which is visible with naked eyes.
Meters Micrometers centimeters millimeters
Answer:
6m/s
Explanation:
Given parameters:
Initial velocity = 0m/s
Acceleration = 2m/s²
Distance = 9m
Unknown:
Final velocity = ?
Solution:
To solve this problem, we use the expression below:
v² = u² + 2as
v is the final velocity
u is the initial velocity
a is the acceleration
s is the distance
v² = 0² + (2 x 2 x 9) = 36
v = 6m/s