Answer:
Explanation:
a ) After the attainment of terminal speed , object takes 4.5 s to cover a distance of 2 m
So terminal speed V = 2 / 4.5
= .444 m /s
When it attains terminal speed , acceleration becomes zero
0 = g - B x .444
B = 22.25 s⁻¹
b ) At t = 0 , v = 0
a = g - B v
a = g at t = 0
c ) When v = .15
a = g - 22.25 x .15
= 9.8 - 3.31
= 6.5 m /s²
<span>Visible satellite images are like photos which are dependent on visible
light from the sun so they work best during the day. The sensor works by
detecting radiation within the range that wavelength is visible. Because of
this, the rays is usually seen as reaching earth from the East. </span>
Answer: the image distance is -18, 28 cm this means behind of the concave mirror. The image size is 2.2 higher that the original so it has 8.8 cm with the same orientation as original and it is a virtual imagen.
Explanation: In order to sove the imagen formation for a concave mirror we have to use the following equation:
1/p+1/q=1/f where p and q represents the distance to the mirror for the object and imagen, respectively. f is the focal length for the concave mirror.
replacing the values we obtain:
1/8.3+1/q=1/15.2
so 1/q=(1/15.2)-(1/8.3)=-54.7*10^-3
then q=-18.28 cm
The magnification is given by M=-q/p=-(-18,28)/8.3= 2.2
We also add a picture to see the imagen formation for this case.
Answer:
I think it might be A: Alec but tell me if I'm wrong
Explanation: