This is an example of inertia - the body keeps it's energy because there is no force applied to it. When we try to stop it's motion, it resists. A man is not rigidly attached to the bus, so he keeps moving forward, at least until he hits the front window from inside. Answer is D.
Answer:
If the ship speed is doubled, then the power developed is 8 times the initial value.
Explanation:
ship power is roughly proportional to the cube of the speed, so
P ∝ v³
If the speed is doubled, then the power developed becomes
P ∝ (2)³ = 8 times
Therefore, if the ship speed is doubled, then the power developed is 8 times the initial value.
Atoms<span> are made of three types of sub-atomic particle: neutrons and protons in the nucleus and electrons orbiting the nucleus. </span>Some<span> materials are </span>radioactive<span> because the nucleus of each </span>atom<span> is unstable and gives out nuclear radiation in the form of alpha particles, beta particles or gamma rays.</span>
Answer:
44.3 m/s
Explanation:
a) Draw a free body diagram of the mass M. There are three forces:
Weight force mg pulling down,
Normal force N pushing perpendicular to the ramp,
and tension force T pulling parallel up the ramp.
Sum of forces in the parallel direction:
∑F = ma
T − Mg sin 30° = 0
T = Mg sin 30°
T = Mg / 2
Draw a free body diagram of the hanging mass m. There are two forces:
Weight force mg pulling down,
and tension force T pulling up.
Sum of forces in the vertical direction:
∑F = ma
T − mg = 0
T = mg
Substitute:
mg = Mg / 2
m = M / 2
M = 2m
b) Velocity of a standing wave in a string is:
v = √(T / μ)
T = mg, and m = 5 kg, so T = (5 kg) (9.8 m/s²) = 49 N. Therefore:
v = √(49 N / 0.025 kg/m)
v = 44.3 m/s
1) 0N... friction opposes the motion of an object, since the block is at rest there is no motion thus no friction
2) F=ma
= (5.5kg)(30m/s)
=165 N