Weight: it is the gravitational pull applied on a body by the earth’s surface
Mass: it is the amount of matter present
Answer:
Explanation:
We shall find first the velocity of ball at the time when string breaks. Let it be v . During its fall on the ground , 1.02 m below, we use the formula
h = 1/2 gt² where t is time of fall .
1.02 = 1/2 x 9.8 x t²
t²= .2081
t = .456
During this time it travels horizontally at distance of 2.5 m with uniform velocity of v
v x .456 = 2.5
v = 5.48 m /s
centripetal acceleration
= v² / r where r is radius of the circular path
= 5.48² / .478
= 62.82 m /s²
Answer:
a) a = 7.72 m / s², N = 19.9 N and b) F = 25.5 N
Explanation:
To solve this problem we will use Newton's second law, let's set a reference system with an axis parallel to the plane and gold perpendicular axis. Let's break down the weight (W)
sin52 = Wx / W
cos52 = Wy / W
Wx = W sin52
Wy = w cos 52
Let's write them equations
X axis
Wx = ma
Y Axis
N-Wy = 0
N = Wy
a) Let's calculate the acceleration
a = W sin52 / m = mg sin 52 / m
a = g sin 52
a = 9.8 sin52
a = 7.72 m / s²
The force of the ramp is normal
N = Wy = mg cos 52
N = 3.3 9.8 cos 52
N = 19.9 N
b) For the block to move at constant speed the sum of force on the axis must be zero,
F - Wx = 0
F = Wx
F = mg sin52
F = 3.3 9.8 sin 52
F = 25.5 N
Parallel to the plane and going up
The first positively essential requirement is that
you absolutely have to know what 'a' and 'b' are.
I have no clue, so this is as far as I can go.
Answer:
<h3>The answer is 500 km </h3>
Explanation:
The distance covered by an object given it's velocity and time taken can be found by using the formula
<h3>distance = average velocity × time</h3>
From the question
average speed = 250 km/h
time = 2 hrs
We have
distance = 250 × 2
We have the final answer as
<h3>500 km</h3>
Hope this helps you