Answer:
Energy conservation.
Explanation:
The 1st Law of Thermodynamics is a statement about energy conservation. It states that
, which means that if we <u>substract the work W done</u> by the system to the <u>heat Q given</u> to the system we get the <u>change in the internal energy</u>
, so any excess in energy given to the system appears as internal energy, stating that energy is conserved.
Answer:
3.16 ×
W/
Explanation:
β(dB)=10 × 
=
W/
β=55 dB
Therefore plugging into the equation the values,
55=10
})[/tex]
5.5=
})[/tex]
= 
316227.76×
= I
I= 3.16 ×
W/
Answer:

Explanation:
Let the charge on the ball bearing is q.
charge on glass bead, Q = 20 nC = 20 x 10^-9 C
Force between them, F = 0.018 N
Distance between them, d = 1 cm = 0.01 m
By use of Coulomb's law in electrostatics

By substituting the values


Thus, the charge on the ball bearing is 
Answer:
At time 10.28 s after A is fired bullet B passes A.
Passing of B occurs at 4108.31 height.
Explanation:
Let h be the height at which this occurs and t be the time after second bullet fires.
Distance traveled by first bullet can be calculated using equation of motion

Here s = h,u = 450m/s a = -g and t = t+3
Substituting

Distance traveled by second bullet
Here s = h,u = 600m/s a = -g and t = t
Substituting

Solving both equations

So at time 10.28 s after A is fired bullet B passes A.
Height at t = 7.28 s

Passing of B occurs at 4108.31 height.
Answer:
B : It will avoid the distortion from the atmosphere and give scientists more accurate data
Explanation: