1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Setler [38]
2 years ago
15

Refer to Figure 9-18. A #_____ electrode lead and workpiece lead should be used to carry 150 amperes of electricity 75 feet to t

he workpiece and 75 feet back to the welding machine.
Engineering
1 answer:
Anni [7]2 years ago
8 0

Answer:

AC or

Explanation:

BC

You might be interested in
The I26 profile beam is supported and loaded as in the figure. It is required to calculate the vertical movement of the free end
jarptica [38.1K]

Answer:

...

Explanation:

...

6 0
3 years ago
Sea B = 5.00 m a 60.0°. Sea C que tiene la misma magnitud que A y un ángulo de dirección mayor que el de A en 25.0°. Sea A ⦁ B =
uranmaximum [27]

Answer:

\| \vec A \| = 6.163\,m

Explanation:

Sean A, B y C vectores coplanares tal que:

\vec A = (\| \vec A \|\cdot \cos \theta_{A},\| \vec A \|\cdot \sin \theta_{A}), \vec B = (\| \vec B \|\cdot \cos \theta_{B},\| \vec B \|\cdot \sin \theta_{B}) y \vec C = (\| \vec C \|\cdot \cos \theta_{C},\| \vec C \|\cdot \sin \theta_{C})

Donde \| \vec A \|, \| \vec B \| y \| \vec C \| son las normas o magnitudes respectivas de los vectores A, B y C, mientras que \theta_{A}, \theta_{B} y \theta_{C} son las direcciones respectivas de aquellos vectores, medidas en grados sexagesimales.

Por definición de producto escalar, se encuentra que:

\vec A \,\bullet\, \vec B = \|\vec A \| \| \vec B \| \cos \theta_{B}\cdot \cos \theta_{A} + \|\vec A \| \| \vec B \| \sin \theta_{B}\cdot \sin \theta_{A}

\vec B \,\bullet\, \vec C = \|\vec B \| \| \vec C \| \cos \theta_{B}\cdot \cos \theta_{C} + \|\vec B \| \| \vec C \| \sin \theta_{B}\cdot \sin \theta_{C}

Asimismo, se sabe que \| \vec B \| = 5\,m, \theta_{B} = 60^{\circ}, \vec A \,\bullet \,\vec B = 30\,m^{2}, \vec B\, \bullet\, \vec C = 35\,m^{2}, \|\vec A \| = \| \vec C \| y \theta_{C} = \theta_{A} + 25^{\circ}. Entonces, las ecuaciones quedan simplificadas como siguen:

30\,m^{2} = 5\|\vec A \| \cdot (\cos 60^{\circ}\cdot \cos \theta_{A} + \sin 60^{\circ}\cdot \sin \theta_{A})

35\,m^{2} = 5\|\vec A \| \cdot [\cos 60^{\circ}\cdot \cos (\theta_{A}+25^{\circ}) + \sin 60^{\circ}\cdot \sin (\theta_{A}+25^{\circ})]

Es decir,

30\,m^{2} = \| \vec A \| \cdot (2.5\cdot \cos \theta_{A} + 4.330\cdot \sin \theta_{A})

35\,m^{2} = \| \vec A \| \cdot [2.5\cdot \cos (\theta_{A}+25^{\circ})+4.330\cdot \sin (\theta_{A}+25^{\circ}})]

Luego, se aplica las siguientes identidades trigonométricas para sumas de ángulos:

\cos (\theta_{A}+25^{\circ}) = \cos \theta_{A}\cdot \cos 25^{\circ} - \sin \theta_{A}\cdot \sin 25^{\circ}

\sin (\theta_{A}+25^{\circ}) = \sin \theta_{A}\cdot \cos 25^{\circ} + \cos \theta_{A} \cdot \sin 25^{\circ}

Es decir,

\cos (\theta_{A}+25^{\circ}) = 0.906\cdot \cos \theta_{A} - 0.423 \cdot \sin \theta_{A}

\sin (\theta_{A}+25^{\circ}) = 0.906\cdot \sin \theta_{A} + 0.423 \cdot \cos \theta_{A}

Las nuevas expresiones son las siguientes:

30\,m^{2} = \| \vec A \| \cdot (2.5\cdot \cos \theta_{A} + 4.330\cdot \sin \theta_{A})

35\,m^{2} = \| \vec A \| \cdot [2.5\cdot (0.906\cdot \cos \theta_{A} - 0.423 \cdot \sin \theta_{A})+4.330\cdot (0.906\cdot \sin \theta_{A} + 0.423 \cdot \cos \theta_{A})]

Ahora se simplifican las expresiones, se elimina la norma de \vec A y se desarrolla y simplifica la ecuación resultante:

30\,m^{2} = \| \vec A \| \cdot (2.5\cdot \cos \theta_{A} + 4.330\cdot \sin \theta_{A})

35\,m^{2} = \| \vec A \| \cdot (4.097\cdot \cos \theta_{A} +2.865\cdot \sin \theta_{A})

\frac{30\,m^{2}}{2.5\cdot \cos \theta_{A}+ 4.330\cdot \sin \theta_{A}} = \frac{35\,m^{2}}{4.097\cdot \cos \theta_{A} + 2.865\cdot \sin \theta_{A}}

30\cdot (4.097\cdot \cos \theta_{A} + 2.865\cdot \sin \theta_{A}) = 35\cdot (2.5\cdot \cos \theta_{A}+4.330\cdot \sin \theta_{A})

122.91\cdot \cos \theta_{A} + 85.95\cdot \sin \theta_{A} = 87.5\cdot \cos \theta_{A} + 151.55\cdot \sin \theta_{A}

35.41\cdot \cos \theta_{A} = 65.6\cdot \sin \theta_{A}

\tan \theta_{A} = \frac{35.41}{65.6}

\tan \theta_{A} = 0.540

Ahora se determina el ángulo de \vec A:

\theta_{A} = \tan^{-1} \left(0.540\right)

La función tangente es positiva en el primer y tercer cuadrantes y tiene un periodicidad de 180 grados, entonces existen al menos dos soluciones del ángulo citado:

\theta_{A, 1} \approx 28.369^{\circ} y \theta_{A, 2} \approx 208.369^{\circ}

Ahora, la magnitud de \vec A es:

\| \vec A \| = \frac{35\,m^{2}}{4.097\cdot \cos 28.369^{\circ} + 2.865\cdot \sin 28.369^{\circ}}

\| \vec A \| = 6.163\,m

8 0
4 years ago
What type of treatment is Dr. Wayne experimenting on?
shepuryov [24]

Answer:

Vaccine

Explanation:

4 0
3 years ago
2.11 Consider a 400 mm × 400 mm window in an aircraft. For a temperature difference of 90°C from the inner to the outer surface
alexandr402 [8]

Answer:

The heat loss rate through one of the windows made of polycarbonate is 252W. If the window is made of aerogel, the heat loss rate is 16.8W. If the window is made of soda-lime glass, the heat loss rate is 1190.4W.

The cost associated with the heat loss through the windows for an 8-hour flight is:

For aerogel windows: $17.472 (most efficient)

For polycarbonate windows: $262.08

For soda-lime glass windows: $1,238.016 (least efficient)

Explanation:

To calculate the heat loss rate through the window, we can use a model of heat transmission by conduction throw flat wall. Using unidimensional Fourier law:

\frac{dQ}{dt}=\dot Q =-kS\nabla \vec{T}

In this case:

\dot Q =k\frac{S}{L} \Delta T

If we replace the data provided by the problem we get the heat loss rate through one of the windows of each material (we only have to change the thermal conductivities).

To obtain the thermal conductivity of the soda-lime glass we use the graphic attached to this answer (In this case for soda-lime glass k₃₀₀=0.992w/m·K).

To calculate the cost associated with the heat loss through the windows for an 8-hour flight we use this formula (using the heat loss rate calculated in each case):

Cost=C_{hc}\cdot \dot Q \cdot t \cdot n=1\frac{\$}{Kwh} \cdot \dot Q \cdot 8h \cdot 130

6 0
3 years ago
(a) Define a slip system. (b) Cite one slip system for the simple cubic crystal structure. (c) One slip system for the BCC cryst
Lemur [1.5K]

Answer:

I'm gonna say D.

4 0
3 years ago
Other questions:
  • A liquid level control system linearly converts a displacement of 2-3 meters into a 4-20 mA control signal. A relay closes at 12
    14·1 answer
  • The boundary layer forms the thin region near a surface where the flow is affected by frictional forces. How does this layer cha
    14·1 answer
  • Technician A says independent shops are not affiliated with vehicle manufacturers, but it is easy for technicians who work in th
    8·1 answer
  • Estimate the endurance strength of a 1.5-in-diameter rod of AISI 1040 steel having a machined finish and heat-treated to a tensi
    7·1 answer
  • A wastewater treatment plant has two primary clarifiers, each 20m in diameter with a 2-m side-water depth. the effluent weirs ar
    8·1 answer
  • How much heat (Btu) is prod uced by a 150-W light bulb that is on for 20-hours?
    14·1 answer
  • Find Re,Rc,R1 and R2!? Show your work.(hlp plz)
    7·1 answer
  • Problem 1. Network-Flow Programming (25pt) A given merchandise must be transported at a minimum total cost between two origins (
    15·1 answer
  • The modifications of superheat and reheat for a vapor power plant are specifically better for the operation which of the followi
    15·1 answer
  • Write the design brief (identify the problem) of mine headgear​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!