Answer:
solution in the picture attached
Explanation:
If a controlled input can transfer (alter) the control system's initial states to some other desired states in a finite amount of time, the control system is said to be controllable.
Using Kalman's test, we can determine whether a control system is controllable. The evolution model for the state variables (time-varying unknowns) and the observation model, which connects the observations to the state variables, make up the state space representation of a dynamical system. The capacity to move a system about in its full configuration space using just specific permitted actions is generally referred to as controllability. The precise definition changes slightly depending on the model type or framework used.
Learn more about control here-
brainly.com/question/28540307
#SPJ4
Answer:
864 KN
Explanation:
Atmospheric pressure is defined as the force per unit area exerted against a surface by the weight of the air above that surface.
Please kindly check attachment for the step by step solution of the given problem.
Answer:
for a) F= 744.97 N
for a) F= 167.85 N
for a) F= 764.57 N
Explanation:
the pressure developed by the piston should be higher than the saturated vapor pressure of water for boiling point at T=120 to ensure boiling.
Then from steam tables
T= 120°C → P required=Pr= 198.67 kPa
then the pressure developed by the piston is
P = (m*g + F)/A
where m= mass of the piston ,g= gravity F= force required and A= area of the piston
then
Pr = P = (m*g + F)/A
F = Pr*A-m*g
since A= π/4*D²
F =π/4* Pr*D²-m*g
replacing values
F =π/4* Pr*D²-m*g = π/4*198.67 *10³Pa*(0.07m)² -2kg* 9.8m/s²
F= 744.97 N
b) for T₂=80°C → Pr₂=47.41 kPa
F₂ =π/4* Pr₂*D²-m*g = π/4*47.41*10³Pa*(0.07m)² -2kg* 9.8m/s²
F₂= 167.85 N
c) for m=0 (mass of the piston neglected) ,the force required is
F₃ =π/4*Pr*D² = π/4*198.67 *10³Pa*(0.07m)²= 764.57 N
F₃ =764.57 N