Answer:
1. They needed to develop multiple components in software programs.
2. The ability to overlap the development to be more evolutionary in nature.
3. The need to be more risk-averse or the unwillingness to take risks led to the use of a spiral model.
Explanation:
Software development life cycle (SDLC) can be defined as a strategic process or methodology that defines the key steps or stages for creating and implementing high quality software applications.
In SDLC, a waterfall model can be defined as a process which involves sequentially breaking the software development into linear phases. Thus, the development phase takes a downward flow like a waterfall and as such each phase must be completed before starting another without any overlap in the process.
An incremental model refers to the process in which the requirements or criteria of the software development is divided into many standalone modules until the program is completed.
Also, a spiral model can be defined as an evolutionary SDLC that is risk-driven in nature and typically comprises of both an iterative and a waterfall model. Spiral model of SDLC consist of these phases; planning, risk analysis, engineering and evaluation.
<em>What motivated software engineers to move from the waterfall model to the incremental or spiral model is actually due to the following fact;</em>
- They needed to develop multiple components in software programs.
- The ability to overlap the development to be more evolutionary in nature.
- The need to be more risk-averse or the unwillingness to take risks led to the use of a spiral model.
Answer:
please give me brainlist and follow
Explanation:
Example of an irreverseble isothermal process is mixing of two fluids on the same temperature - it requires a lot of energy to unmix Jack and coke. ... Example of an reversible process with changing temperature is isentropic expansion.
Answer:
c) Strain
Explanation:
For example, the shear strain “γ” on the surface of the rod is determined by measuring the relative angle of twist “φg” over a gage length “Lg”.
Answer:
a). TRUE
Explanation:
Thermal efficiency of a system is the defined as the ratio of the net work done to the total heat input to the system. It is a dimensionless quantity.
Mathematically, thermal efficiency is
η = net work done / heat input
While heat rate is the reciprocal of efficiency. It is defined as the ratio of heat supplied to the system to the useful work done.
Mathematically, heat rate is
Heat rate = heat input / net work done
Thus from above we can see that heat rate is the reciprocal of thermal efficiency.
Thus, Heat rate is reciprocal of thermal efficiency.