Answer:
B
Step-by-step explanation:
(x+7)(x+5)
 
        
             
        
        
        
For this case we must solve the following questions:
Question 1:
We should simplify the following expression:

Applying double C we have:

By definition of multiplication of powers of the same base we have to place the same base and add the exponents:
Canceling common terms:

Answer:
Option A
Question 2:
We should simplify the following expression:

So, we have:

Simplifying common terms:

Answer:
Option D
Question 3:
We factor the following expressions to rewrite the experience:
<em> : </em>We look for two numbers that multiplied give 10 and added 7:
: </em>We look for two numbers that multiplied give 10 and added 7:

<em> </em> We look for two numbers that multiplied give -50 and added -5:
</em> We look for two numbers that multiplied give -50 and added -5:

<em> </em>
</em>
Rewriting the given expression we have:

We simplify common terms in the numerator and denominator we have:

Answer:
Option D
 
        
                    
             
        
        
        
Answer:
D
Step-by-step explanation:
hope this helps 
 
        
                    
             
        
        
        
Answer:
Step-by-step explanation:

Multiply the equation by 4

5x - 2 + 2 = 2*(3y + 2)
5x +0 = 2*3y + 2*2
5x = 6y + 4
5x - 6y = 4 --------------------(I)

Multiply the equation by 6

2*(7y + 3) = 3x + 2*7
14y + 6 = 3x + 14
14y = 3x + 14 - 6
14y = 3x + 8
-3x + 14y = 8 ------------------------(II)
Multiply equation (I) by 3 and equation (II) by 5 and then add
(I)*3              15x - 18y = 12
(II)*5           <u>-15x  + 70y = 40</u>     {Now add}
                           52y = 52
                               y = 52/52
                              y = 1
Substitute y =1 in equation (I)
5x - 6*1 =  4
 5x - 6 = 4
       5x = 4 +6
       5x = 10
          x = 10/5
x = 2
 
        
             
        
        
        
Answer: C. 
Step-by-step explanation:
C. is the only one with a 3 right next to the x. In 3x, 3 would be the coefficient)