Answer:
Protons, Neutrons, and Electrons
Explanation:
Answer:
1.54 atm
Explanation:
By Dalton's Law Of partial pressure,
Total Pressure = Sum of all partial pressures
So,P= P1 + P2 + P3
Therefore, P=0.23+0.42+0.89
=1.54 atm
Answer:
molecules Cl- = 3.01 E23 molecules
Explanation:
molecules Cl- = 0.50 mol CL- * ( 6.02 E23 molecules/ mol ) = 3.01 E 23 molecules
Answer:
7.12 mm
Explanation:
From coulomb's law,
F = kqq'/r².................... Equation 1
Where F = force, k = proportionality constant, q and q' = The two point charges, r = distance between the two charges.
Make r the subject of the equation,
r = √(kqq'/F).......................... Equation 2
Given: q = q' = 75.0 nC = 75×10⁻⁹ C, F = 1.00 N
Constant: k = 9.0×10⁹ Nm²/C².
Substitute into equation 2
r = √[ (75×10⁻⁹ )²9.0×10⁹/1]
r = 75×10⁻⁹.√(9.0×10⁹)
r = (75×10⁻⁹)(9.49×10⁴)
r = 711.75×10⁻⁵
r = 7.12×10⁻³ m
r = 7.12 mm
Hence the distance between the point charge = 7.12 mm
Answer:
The correct answer is 146 g/mol
Explanation:
<em>Freezing point depression</em> is a colligative property related to the number of particles of solute dissolved in a solvent. It is given by:
ΔTf = Kf x m
Where ΔTf is the freezing point depression (in ºC), Kf is a constant for the solvent and m is the molality of solution. From the problem, we know the following data:
ΔTf = 1.02ºC
Kf = 5.12ºC/m
From this, we can calculate the molality:
m = ΔTf/Kf = 1.02ºC/(5.12ºC/m)= 0.199 m
The molality of a solution is defined as the moles of solute per kg of solvent. Thus, we can multiply the molality by the mass of solvent in kg (250 g= 0.25 kg) to obtain the moles of solute:
0.199 mol/kg benzene x 0.25 kg = 0.0498 moles solute
There are 0.0498 moles of solute dissolved in the solution. To calculate the molar mass of the solute, we divide the mass (7.27 g) into the moles:
molar mass = mass/mol = 7.27 g/(0.0498 mol) = 145.9 g/mol ≅ 146 g/mol
<em>Therefore, the molar mass of the compound is 146 g/mol </em>