the water is heated until it evaporates
Answer:
1.28 g
Explanation:
Mass of anhydrous compound/molar mass of anhydrous compound = mass of hydrated compound/ molar mass of hydrated compound
Mass of anhydrous compound = ?
Mass of hydrated compound = 2g
Molar mass of anhydrous compound= 160 g/mol
Molar mass of hydrated compound = 250 g/mol
x/160 = 2/250
250x = 2 ×160
x= 2 × 160/250
x= 1.28 g
Answer:
1
Explanation:
outershell atoms of an element are also known as valency of that element
so the valency and number of elctron in the outershell of a sodium atom is +1.
hope this will help
mark me as brilliant
Answer:
In order of decreasing miscibility
C₉H₂₀ (nonane)→C₂H₅F (fluoroethane)→C₂H₅Cl (chloroethane)→H₂O (water)
Explanation:
The solubility of a solid is a measure of its ability to dissolve in a liquid while for liquids, the miscibility is a measure of thhe liquid to mix with anoyjer liquid resulting in a soltion which can hold any amount of either liquids. Immiscible liquids are those that are not soluble or have very limited solibility with each other.
C₉H₂₀ (nonane)→C₂H₅F (fluoroethane)→C₂H₅Cl (chloroethane)→H₂O (water)
In the order of decreasing miscibility as like dissolve like, ability to dissociate and polar and organic characteristics are considered
Answer:
In 1897, the British physicist J. J. Thomson (1856–1940) proved that atoms were not the most basic form of matter. He demonstrated that cathode rays could be deflected, or bent, by magnetic or electric fields, which indicated that cathode rays consist of charged particles (Figure 2.2.2 ). More important, by measuring the extent of the deflection of the cathode rays in magnetic or electric fields of various strengths, Thomson was able to calculate the mass-to-charge ratio of the particles. These particles were emitted by the negatively charged cathode and repelled by the negative terminal of an electric field. Because like charges repel each other and opposite charges attract, Thomson concluded that the particles had a net negative charge; these particles are now called electrons. Most relevant to the field of chemistry, Thomson found that the mass-to-charge ratio of cathode rays is independent of the nature of the metal electrodes or the gas, which suggested that electrons were fundamental components of all atoms.
Explanation: