Answer:
Time period, 
Explanation:
Given that,
The quartz crystal used in an electric watch vibrates with a frequency of 32,768 Hz, f = 32768 Hz
We need to find the period of the crystal's motion. The relationship between the frequency and the time period is given by :

T is the time period of the crystal's motion.
Time period is given by :

So, the time period of the crystal's motion is
. Hence, this is the required solution.
That two ways are known as:
1) Series connection
2) Parallel connection
Answer:
Revise energy transfers and use sankey diagrams to calculate the efficiency of these conversions with BBC ... Efficiency is a measure of how much useful energy is converted. Part of ... This is the Sankey diagram for a typical filament lamp: 100 joules of electrical energy is converted to 10 joules of light energy and 90 joules.
Explanation:
Scientific evidence such as reflection and photoelectric effect has proven the wave-particle model of electromagnetic radiation to be true.
<h3>What is electromagnet radiation?</h3>
Electromagnetic radiation is radiation produced as a result of the interactions of the electric and magnetic fields.
Some forms of electromagnetic radiation include:
- radio waves
- microwaves
- ultraviolet radiation
- visible light
Electromagnetic radiation can be described using a wave model or a particle model.
The wave property of electromagnetic radiation include:
- diffraction
- reflection
- refraction
The particle property of electromagnetic radiation include:
- photoelectric effect
- Compton effect.
Therefore, the wave-particle model of electromagnetic radiation is correct because it can be backed up by experiments and evidence.
Learn more about wave-particle model at: brainly.com/question/20452331
Answer:
1.7x10^-10 N
Explanation:
F = G [(m_1)(m_2)]/(r^2)
F = force
G = Gravitational constant 6.67433x10^-11 (N*m^2)/kg^2
m_1 = mass first object
m_2 = mass second object
r = radius between the 2 objects
F = G[(2 kg*2 kg)/(1.25 m)^2]
F = 1.7x10^-10 N