<span>Hydrocarbons are molecules that contain only carbon and hydrogen.</span>
Due to carbon's unique bonding patterns, hydrocarbons can have single, double, or triple bonds between the carbon atoms.
The names of hydrocarbons with single bonds end in "-ane," those
with double bonds end in "-ene," and those with triple bonds end in
"-yne".
The bonding of hydrocarbons allows them to form rings or chains.
Atoms involved in (polar) covalent bonds do not share their electrons equally.
Answer:
Hope this helps you find the answer
Explanation:
The proteins, lipids, and polysaccharides that make up most of the food we eat must be broken down into smaller molecules before our cells can use them—either as a source of energy or as building blocks for other molecules.
Answer:
If conditions are just right, you can see Polaris from just south of the equator. Although Polaris is also known as the North Star, it doesn't lie precisely above Earth's North Pole. If it did, Polaris would have a declination of exactly 90 degree.
Explanation:
The friction factor and head loss when velocity is 1m/s is 0.289 and 1.80 × 10^8 respectively. Also, the friction factor and head loss when velocity is 3m/s is 0.096 and 5.3 × 10^8 respectively.
<h3>How to determine the friction factor</h3>
Using the formula
μ = viscosity = 0. 06 Pas
d = diameter = 120mm = 0. 12m
V = velocity = 1m/s and 3m/s
ρ = density = 0.9
a. Velocity = 1m/s
friction factor = 0. 52 × 
friction factor = 0. 52 × 
friction factor = 0. 52 × 0. 55
friction factor 
b. When V = 3mls
Friction factor = 0. 52 × 
Friction factor = 0. 52 × 
Friction factor = 0. 52 × 0. 185
Friction factor 
Loss When V = 1m/s
Head loss/ length = friction factor × 1/ 2g × velocity^2/ diameter
Head loss = 0. 289 ×
×
× 
Head loss = 1. 80 × 10^8
Head loss When V = 3m/s
Head loss =
×
×
× 
Head loss = 5. 3× 10^8
Thus, the friction factor and head loss when velocity is 1m/s is 0.289 and 1.80 ×10^8 respectively also, the friction factor and head loss when velocity is 3m/s is 0.096 and 5.3 ×10^8 respectively.
Learn more about friction here:
brainly.com/question/24338873
#SPJ1