Answer:
f(g(x)) = x
Explanation:
In order to prove that one function is the inverse of the other, all you have to do is substitute in the main function with the inverse one and solve. If the result is x, then it is verified that one function is the inverse of the other.
Now for the given functions we have:
<span>f(x) =5x-25
</span><span>g(x) = (1/5)x+5
We want to prove that g(x) is the inverse of f(x).
Substitute in the above formula and compute the result as follows:
f(g(x)) = 5(</span>(1/5)x+5) - 25
= x + 25 - 25
= x
The final result is "x", therefore, it is verified that g(x) is the inverse of f(x)
Hope this helps :)
Answer:
x=1/36
Step-by-step explanation:

<em>Hey</em><em>!</em><em>!</em><em>!</em>
<em>In</em><em> </em><em>ques</em><em>tion</em><em> </em><em>no</em><em>.</em><em>4</em><em>,</em><em> </em><em>we</em><em> </em><em>have</em><em> </em><em>to </em><em><u>subtract</u></em><em><u> </u></em><em><u>the</u></em><em><u> </u></em><em><u>equation</u></em><em><u>.</u></em>
<em>In</em><em> </em><em>ques</em><em>tion</em><em> </em><em>no</em><em>.</em><em>5</em><em> </em><em>we</em><em> </em><em>have</em><em> </em><em>to</em><em><u> </u></em><em><u>add</u></em><em><u> </u></em><em><u>the </u></em><em><u>equation</u></em><em><u>.</u></em>
<em>Hope </em><em>it</em><em> </em><em>will</em><em> </em><em>help</em><em> </em><em>you</em><em>.</em><em>.</em><em>.</em>
<h3>
<em><u>Have</u></em><em><u> </u></em><em><u>a</u></em><em><u> </u></em><em><u>great</u></em><em><u> </u></em><em><u>day</u></em></h3>
Answer:
B. x = -8
Step-by-step explanation:
-4(2x + 3) = 2x + 6 - (8x + 2)
-8x -12 = 2x + 6 - 8x -2
(now, "-8" in both terms is cancelled):
-12 = 2x + 6 - 2
(leave 2x alone in second term):
-12 -6 +2 = 2x
-16 = 2x
-16/2 = x
-8 = x
Answer:
(a)0.16
(b)0.588
(c)![[s_1$ s_2]=[0.75,$ 0.25]](https://tex.z-dn.net/?f=%5Bs_1%24%20s_2%5D%3D%5B0.75%2C%24%20%200.25%5D)
Step-by-step explanation:
The matrix below shows the transition probabilities of the state of the system.

(a)To determine the probability of the system being down or running after any k hours, we determine the kth state matrix
.
(a)


If the system is initially running, the probability of the system being down in the next hour of operation is the 
The probability of the system being down in the next hour of operation = 0.16
(b)After two(periods) hours, the transition matrix is:

Therefore, the probability that a system initially in the down-state is running
is 0.588.
(c)The steady-state probability of a Markov Chain is a matrix S such that SP=S.
Since we have two states, ![S=[s_1$ s_2]](https://tex.z-dn.net/?f=S%3D%5Bs_1%24%20%20s_2%5D)
![[s_1$ s_2]\left(\begin{array}{ccc}0.90&0.10\\0.30&0.70\end{array}\right)=[s_1$ s_2]](https://tex.z-dn.net/?f=%5Bs_1%24%20%20s_2%5D%5Cleft%28%5Cbegin%7Barray%7D%7Bccc%7D0.90%260.10%5C%5C0.30%260.70%5Cend%7Barray%7D%5Cright%29%3D%5Bs_1%24%20%20s_2%5D)
Using a calculator to raise matrix P to large numbers, we find that the value of
approaches [0.75 0.25]:
Furthermore,
![[0.75$ 0.25]\left(\begin{array}{ccc}0.90&0.10\\0.30&0.70\end{array}\right)=[0.75$ 0.25]](https://tex.z-dn.net/?f=%5B0.75%24%20%200.25%5D%5Cleft%28%5Cbegin%7Barray%7D%7Bccc%7D0.90%260.10%5C%5C0.30%260.70%5Cend%7Barray%7D%5Cright%29%3D%5B0.75%24%20%200.25%5D)
The steady-state probabilities of the system being in the running state and in the down-state is therefore:
![[s_1$ s_2]=[0.75$ 0.25]](https://tex.z-dn.net/?f=%5Bs_1%24%20s_2%5D%3D%5B0.75%24%20%200.25%5D)