I think the answer is <span>PCl5 + 4H2O → 5HCl + H3PO4
</span>
Answer:
Radium-226 is a radioactive decay product in the uranium-238 decay series and is the precursor of radon-222. Radium-228 is a radioactive decay product in the thorium-232 decay series. Both isotopes give rise to many additional short-lived radionuclides, resulting in a wide spectrum of alpha, beta and gamma radiations.
Explanation:
Are there any values given in the question?
Answer:
b. ΔH and ΔS are negative at all temperatures .
Explanation:
During the process of condensation ,
The gaseous state convert to liquid state ,
Hence , the entropy of the system reduces , i.e. , the randomness decreases .
And the value for entropy is negative ,
hence ,
Δ S = negative ,
Δ H = negative ,
Since ,
The heat is releasing from system .
hence , the most appropriate option will be ΔH and ΔS are negative at all temperatures .
Boiling point of a compound is determined by the strength of intermolecular forces of attraction between the molecules present in it. Stronger the intermolecular forces of attraction, higher will be the boiling point.
Ionic compounds show ion-ion interactions which are the strongest among all. Ion-dipole interactions are shown when ionic solutes are dissolved in polar solvents. Hydrogen bonding is also a relatively stronger force that is present between H atom and an electronegative atom like F, O and N(
) . All polar molecules show dipole-dipole interaction (
and
). Dispersion forces are the weakest intermolecular forces due to momentary dipoles between electron clouds and nucleus.
Among the given compounds,
has dispersion forces as the major intermolecular forces of attraction. So they they exhibit the weakest IMF, hence have the lowest boiling point.