Answer:
Explanation:
The movement of the electrons is illustrated in the picture attached to this answer. It is a four-step reaction mechanism.
First STEP: The first step involves the transfer of an electron from sodium to form a radical anion.
Second STEP: This radical anion then removes a proton/hydrogen from ammonia in a bid to neutralize itself (hence the hydrogen becomes bonded to the anion).
Third STEP: The sodium (from NaNH₂ formed) transfers an electron again to produce a vinyl carbanion.
Fourth STEP: The carbanion then removes a proton/hydrogen from ammonia (like in the second step) to form a neutral trans-alkene.
NOTE: The circled numbers denote each step while the mechanism on the left represents the use of any alkyl group (R and R') while the mechanism on the right assumes both alkyl groups are methyl. Hence, 2-butyne started the reaction and the final product was trans-2-butene.
For the answer to the question above, well presumably because the exact concentration of the composition KMnO4 solution doesn't matter. <span>If the concentration of the KMnO4 solution is important (usually in titrations etc.) then it is not allowed to use a wet bottle. The water in the bottle will dilute the KMnO4 solution and change the concentration of the said compound.</span>
Answer:
Salt water is, A. a mixture
The answer is, All of the above
Answer:
You can view more details on each measurement unit: molecular weight of Copper(I) Oxide or grams The molecular formula for Copper(I) Oxide is Cu2O. The SI base unit for amount of substance is the mole. 1 mole is equal to 1 moles Copper(I) Oxide, or 143.0914 grams.
Explanation: