<span>Answer:
Co + 3Ag+ -----> Co3+ + 3Ag</span>
N = M x V
n = 2.5 x 5.0
n = 12.5 moles of C6H12O6
The rate constant : k = 9.2 x 10⁻³ s⁻¹
The half life : t1/2 = 75.3 s
<h3>Further explanation</h3>
Given
Reaction 45% complete in 65 s
Required
The rate constant and the half life
Solution
For first order ln[A]=−kt+ln[A]o
45% complete, 55% remains
A = 0.55
Ao = 1
Input the value :
ln A = -kt + ln Ao
ln 0.55 = -k.65 + ln 1
-0.598=-k.65
k = 9.2 x 10⁻³ s⁻¹
The half life :
t1/2 = (ln 2) / k
t1/2 = 0.693 : 9.2 x 10⁻³
t1/2 = 75.3 s
By using the ICE table :
initial 0.2 M 0 0
change -X + X +X
Equ (0.2 -X) X X
when Ka = (X) (X) / (0.2-X)
so by substitution:
4.9x10^-10 = X^2 / (0.2-X) by solving this equation for X
∴X ≈ 10^-6
∴[HCN] = 10^-6
and PH = -㏒[H+]
= -㏒ 10^-6
= 6
For this, we first calculate molecular weight of MgSiO₃:
Atomic masses:
Mg = 24
Si = 28
O = 16
Mr = 24 + 28 + 16 x 3
Mr = 100
moles = mass / Mr
moles = 237 / 100
moles = 2.37