The <em>quadratic</em> function g(x) = (x - 5)² + 1 passes through the points (2, 10) and (8, 10) and has a vertex at (5, 1).
<h3>How to analyze quadratic equations</h3>
In this question we have a graph of a <em>quadratic</em> equation translated to another place of a <em>Cartesian</em> plane, whose form coincides with the <em>vertex</em> form of the equation of the parabola, whose form is:
g(x) = C · (x - h)² - k (1)
Where:
- (h, k) - Vertex coordinates
- C - Vertex constant
By direct comparison we notice that (h, k) = (5, 1) and C = 1. Now we proceed to check if the points (x, y) = (2, 10) and (x, y) = (8, 10) belong to the parabola.
x = 2
g(2) = (2 - 5)² + 1
g(2) = 10
x = 8
g(8) = (8 - 5)² + 1
g(8) = 10
The <em>quadratic</em> function g(x) = (x - 5)² + 1 passes through the points (2, 10) and (8, 10) and has a vertex at (5, 1).
To learn more on parabolae: brainly.com/question/21685473
#SPJ1
Answer: 8.9%
Step-by-step explanation: 13 - 4.1
a. Parameterize
by

with
.
b/c. The line integral of
over
is




d. Notice that we can write the line integral as

By Green's theorem, the line integral is equivalent to

where
is the triangle bounded by
, and this integral is simply twice the area of
.
is a right triangle with legs 2 and 5, so its area is 5 and the integral's value is 10.
Answer: Lesser = 19, Greater = 21
See picture reply.