9514 1404 393
Answer:
(c) 5x and 3x, and 4 and 1
Step-by-step explanation:
Like terms have the same variable(s) to the same power(s).
The terms of this expression are ...
- x^3: variable x, power 3
- 5x: variable x, power 1
- -3x: variable x, power 1
- 3y: variable y, power 1
- 4: no variable
- -1: no variable
The like terms are {5x, -3x}, which have the x-variable to the first power, and {4, -1}, which have no variable.
1 mile is the difference between mount Taylor and mount Sullivan
Usually one will differentiate the function to find the minimum/maximum point, but in this case differentiating yields:

which contains multiple solution if one tries to solve for x when the differentiated form is 0.
I would, though, venture a guess that the minimum value would be (approaching) 5, since the function would be undefined in the vicinity.
If, however, the function is

Then differentiating and equating to 0 yields:

which gives:

or

We reject x=5 as it is when it ix the maximum and thus,

, for
I don't think you use a fraction. You multiply .6666 by 72 which equals 47.9952 or rounded 48. :)
Answer:
x = -5/2 + i√19 and x = -5/2 - i√19
Step-by-step explanation:
Next time, please share the possible answer choices.
Here we can actually find the roots, using the quadratic formula or some other approach.
a = 1, b = 5 and c = 11. Then the discriminant is b^2-4ac, or 5^2-4(1)(11). Since the discriminant is negative, the roots are complex. The discriminant value is 25-44, or -19.
Thus, the roots of the given poly are:
-5 plus or minus i√19
x = -----------------------------------
2(1)
or x = -5/2 + i√19 and x = -5/2 - i√19