The given question is incomplete. The complete question is:
How much heat is produced when 24.8 g of
is burned in excess oxygen gas
Given:
ΔH= −802 kJ.
Answer: 1243.1 kJ
Explanation:
Heat of combustion is the amount of heat released on complete combustion of 1 mole of substance.
Given :
Amount of heat released on combustion of 1 mole of methane = 802 kJ kJ/mol
According to avogadro's law, 1 mole of every substance occupies 22.4 L at NTP, weighs equal to the molecular mass and contains avogadro's number
of particles.
1 mole of
weighs = 16 g
Thus we can say:
16 g of
on combustion releases heat = 802 kJ
Thus 24.8 g of
on combustion releases =
Thus heat released when 24.8 g of methane is burned in excess oxygen gas is 1243.1 kJ
Answer:Label the parts of this wave.
A:
✔ crest
B:
✔ amplitude
C:
✔ trough
D:
✔ wavelength
Explanation:
You would get four moles of magnesium nitrate :) you would have to
“ ?molesmg(oh)2 = 8molmg(no3)2 x molmg(oh)2 / 2molhno3 = 4 moles of magnesium nitrate :))) hopefully this helps! <3
Yes they are what are your options
Answer:
a H2CO3 b HCO3- and c H+ and HCO3-
Explanation:
As the pKa value of phenol is more than that of carbonic acid(H2CO3), the carbonic acid will have high Ka value than that of phenol.
The acid that contain high Ka value act as stong acid.From that point of view H2CO3 is a strong acid than phenol as the Ka value of carbonic acid is greater than that of phenol.
The conjugate base of H2CO3 is bicarbonate ion(HCO3-)
c The species that predorminates at equilibrium are H+ and HCO3-