Answer:
a. in pure water Solubility (x) = 1.26 x 10⁻⁴M
b. in 0.202M M⁺² Solubility (x) = 9.963 x 10⁻¹²M
The large drop in solubility is consistent with the common ion effect.
Explanation:
a. Solubility in pure water
Given: M(OH)₂ ⇄ M⁺² + 2OH⁻
I --- 0 0
C --- x 2x
E --- x 2x
Ksp = [M⁺²][OH⁻]² = (x)(2x)² = 4x³ => x = CubeRt(Ksp/4)
solubility in pure water = x = CubeRt(8.05 x 10⁻¹²/4) = 1.26 x 10⁻⁴M
b. Solubility in presence of 0.202M M⁺² as common ion.
Given: M(OH)₂ ⇄ M⁺² + 2OH⁻
I --- 0.202M 0
C --- +x +2x
E --- 0.202M + x 2x
≈ 0.202M
Ksp = [M⁺²][2x]² = (0.202)(2x)² = (0.202)(4x²) = 8.05 x 10⁻¹²
=> x = (8.05 x 10⁻¹²)/(0.202)(4) = 9.963 x 10⁻¹²M
<span>Your final answer would be C4H10O2, which equals 90amu</span>
C Because Mesozoic Is An Era The First Fish Seen
Answer:
large supply of nutrients.
Explanation:
In a wetland, the soil is covered by water or is almost covered by water. This water may be coming upwards from an underground aquifer. Wetlands are covered by water for most of the year.
They are sheltered waters and do provide habitats for many living things.
Nutrients such as; Carbon sulfur, phosphorus, carbon, and nitrogen are cycled within the soil of wetlands hence wetlands have a large supply of nutrients.