Answer: A. Cilla Is Correct.
<u>0.219 moles </u><u>moles are present in the flask when the </u><u>pressure </u><u>is 1.10 atm and the temperature is 33˚c.</u>
What is ideal gas constant ?
- The ideal gas constant is calculated to be 8.314J/K⋅ mol when the pressure is in kPa.
- The ideal gas law is a single equation which relates the pressure, volume, temperature, and number of moles of an ideal gas.
- The combined gas law relates pressure, volume, and temperature of a gas.
We simple use this formula-
The basic formula is PV = nRT where. P = Pressure in atmospheres (atm) V = Volume in Liters (L) n = of moles (mol) R = the Ideal Gas Law Constant.
68F = 298.15K
V = nRT/P = 0.2 * 0.08206 * 298.15K / (745/760) = 4.992Liters
n = PV/RT = 1.1atm*4.992L/(0.08206Latm/molK * 306K)
n = 0.219 moles
Therefore, 0.219 moles moles are present in the flask when the pressure is 1.10 atm and the temperature is 33˚c.
Learn more about ideal gas constant
brainly.com/question/3961783
#SPJ4
Answer:
–500KJ
Explanation:
Data obtained from the question include the following:
Heat of reactant (Hr) = 800KJ
Heat of product (Hp) = 300KJ
Enthalphy change (ΔH) =..?
The enthalphy change is simply defined as the difference between the heat of product and the heat of reactant i.e
Enthalphy change = Heat of product – Heat of reactant
ΔH = Hp – Hr
With the above formula, we can easily calculate the enthalphy change as follow
ΔH = Hp – Hr
ΔH = 300 – 800
ΔH = –500KJ.
Therefore, the overall energy change for the reaction between hydrogen and oxygen shown in the diagram above is –500KJ
Objects float on water because it has surface tension.
Answer:
Rubidium
Explanation:
Rubidium is an alkali metal that has 37 protons 48 neutrons and 1 valence electron