The correct answer would be, "<span>D. beta-galactosidase".
As all the others are made in different organisms.
Hoped I helped.</span>
The mass defect for the isotope thorium-234 if given mass is 234.04360 amu is 1.85864 amu.
<h3>How do we calculate atomic mass?</h3>
Atomic mass (A) of any atom will be calculated as:
A = mass of protons + mass of neutrons
In the Thorium-234:
Number of protons = 90
Number of neutrons = 144
Mass of one proton = 1.00728 amu
Mass of one neutron = 1.00866 amu
Mass of thorium-234 = 90(1.00728) + 144(1.00866)
Mass of thorium-234 = 90.6552 + 145.24704 = 235.90224 amu
Given mass of thorium-234 = 234.04360 amu
Mass defect = 235.90224 - 234.04360 = 1.85864 amu
Hence required value is 1.85864 amu.
To know more about Atomic mass (A), visit the below link:
brainly.com/question/801533
The average atomic mass if the element above is calculated by the sum of the product of the isotope abundance and its atomic mass unit. It is expressed as:
Average atomic mass = Σ xi(Mi)
<span>Average atomic mass = (.7547 x 248.7) + (.2453 x 249.4) = 248.87
</span>
Hope this helps.
I got that pH=3.65 using the fact that Ka=[H⁺][A⁻]/[HA] at equilibrium. In the ice table, I stands for initial, C stands for change, and E stands for equilibrium.
I hope this helps. Let me know if anything is unclear.
Depending upon the clumping reaction with anti A , anti B and anti Rh antibodies the blood types are determined.
Explanation:
Agglutination (clumping) will occur when blood that contains the particular antigen is mixed with the particular antibody.
A+ have Agglutination with Anti-A ,Anti-Rh and No agglutination with Anti-B.
A- have Agglutination with Anti-A and No agglutination with Anti-B and Anti-Rh.
B+ have Agglutination with Anti-B Anti-Rh and No agglutination with Anti-A.
B- have Agglutination with Anti-B and No agglutination with Anti-B and Anti-Rh.
Rh+ have Agglutination with Anti-A and Anti-Rh and No agglutination with Anti-B.
Rh- have No Agglutination with Anti-A and Anti-B and Anti-Rh.