Answer:
0.04 M
Explanation:
Given data:
Mass of Na₂SO₄= 14.2 g
Volume of solution = 2.50 L
Molarity of solution = ?
Solution:
Number of moles of Na₂SO₄:
Number of moles = mass/ molar mass
Number of moles = 14.2 g/ 142.04 g/mol
Number of moles = 0.1 mol
Molarity :
Molarity = number of moles of solute / volume of solution in L
Molarity = 0.1 mol / 2.50 L
Molarity = 0.04 M
Answer:
ΔG° = -5.4 kJ/mol
ΔG = 873.2 J/mol = 0.873 kJ /mol
Explanation:
Step 1: Data given
ΔG (NO2) = 51.84 kJ/mol
ΔG (N2O4) = 98.28 kJ/mol
Step 2:
ΔG = ΔG° + RT ln Q
⇒with Q = the reaction quatient
⇒with T = the temperature = 298 K
⇒with R = 8.314 J / mol*K
⇒with ΔG° = ΔG° (N2O4) - 2*ΔG°(NO2
)
⇒ ΔG° = 98.28 kJ/mol - 2* 51.84 kJ/mol
⇒ ΔG° = -5.4 kJ/mol
Part B
ΔG = ΔG° =RT ln Q
⇒with G° = -5.4 kj/mol = -5400 j/mol
⇒
with R = 8.314 J/K*mol
⇒with T = 298 K
⇒with Q = p(N2O4)/ [ p(NO2) ]² = 1.63/0.36² = 12.577
ΔG = -5400 + 8.314 * 298 * ln(12.577)
ΔG = -5400 + 8.314 * 298 * 2.532
ΔG = 873.2 J/mol = 0.873 kJ/mol
As I understand from your question, we should synthesize nickel sulfate first from nickel (II) oxide and sulfuric acid and second from nickel carbonate and sulfuric acid.
The chemical reactions will look like this:
NiO (s) + H₂SO₄ (aq) → NiSO₄ (aq) + H₂O (l)
NiCO₃ (aq)* + H₂SO₄ → NiSO₄ (aq) + H₂CO₃ (aq)
but carbonic acid will decompose to carbon dioxide and water
H₂CO₃ (aq) → CO₂ (g) + H₂O (l)
(*) NiCO₃ has a poor solubility in water, but enough to start the reaction.
<span>Heat is the total energy of molecular motion in a substance while temperature is a measure of the average energy of molecular motion in a substance. Heat energy depends on the speed of the particles, the number of particles (the size or mass), and the type of particles in an object.</span>
Answer:
all of these are properties of metalloids