Answer:
When we say "chlorine wants to gain one electron", we speak of the radical atom. Chlorine as a free radical, Cl⋅ , is the chlorine atom that we say has 7 valence electrons and wants its 8th to form an octet. So, Cl⋅ , chlorine radical, is less stable, and Cl− , chlorine ion, is more stable
The Answer you are looking for is true
Answer:
The most common example is the molar volume of a gas at STP (Standard Temperature and Pressure), which is equal to 22.4 L for 1 mole of any ideal gas at a temperature equal to 273.15 K and a pressure equal to 1.00 atm.If an ideal gas at a constant temperature is initially at a pressure of 3.8 atm and is then allowed to expand to a volume of 5.6 L and a pressure of 2.1 - 18914… ... of 5.6 L and a pressure of 2.1 atm, what is the initial volume of the gas? ... An ideal gas is at a pressure of 1.4 atm and has a volume of 3 L.
Explanation:
I hope I help :)
Answer:
A molecule is stable when there is no energetically-accessible mechanism available that allows it to reacts and form a more stable molecule or molecules whiles Are configuration of unknown atomic nuclei and electrons discovered by Reed Richard
Answer:
37.25 grams/L.
Explanation:
- Molarity (M) is defined as the no. of moles of solute dissolved per 1.0 L of the solution.
<em>M = (no. of moles of KCl)/(volume of the solution (L))</em>
<em></em>
∵ no. of moles of KCl = (mass of KCl)/(molar mass of KCl)
∴ M = [(mass of KCl)/(molar mass of KCl)]/(volume of the solution (L))
∴ (mass of KCl)/(volume of the solution (L)) = (M)*(molar mass of KCl) = (0.5 M)*(74.5 g/mol) = 37.25 g/L.
<em>So, the grams/L of KCl = 37.25 grams/L.</em>