D is the answer your looking for
Answer : The value of equilibrium constant for this reaction at 328.0 K is 
Explanation :
As we know that,

where,
= standard Gibbs free energy = ?
= standard enthalpy = 151.2 kJ = 151200 J
= standard entropy = 169.4 J/K
T = temperature of reaction = 328.0 K
Now put all the given values in the above formula, we get:


The relation between the equilibrium constant and standard Gibbs free energy is:

where,
= standard Gibbs free energy = 95636.8 J
R = gas constant = 8.314 J/K.mol
T = temperature = 328.0 K
K = equilibrium constant = ?
Now put all the given values in the above formula, we get:


Therefore, the value of equilibrium constant for this reaction at 328.0 K is 
Answer:
The red blood cells will burst
Explanation:
When the red blood cells are placed in pure water, they will gain water by osmosis, swell and finally burst due to their weak cell membranes. This process is referred to as hemolysis.
Answer:
There are other details missing in the question. i.e Assume that x is much larger than the separation d between the charges in the dipole, so that the approximate expression for the electric field along the dipole axis E = p/2πε0y3 can be used, where p is the dipole moment, and y is the distance between ions. A) What is magnitude______N B) Direction? +x-direction or -x-direction C) Is this force attractive or repulsive?
A) Magnitude of electric force = 6.576 x 10 raised to power -13 N
B) Since the force direction is always dependent on the electric field and electric field = F/q, since the chlorine has a negative charge as such the direction of the electric force will be in the X - direction
C) Since the charges are of different nature, as such the force between them will be ATTRACTIVE.
Explanation:
The detailed steps is shown in the attachment
Answer: energy needed to remove an electron from an atom or ion in the gas phase. Explanation: That is the very definition of ionization energy: ionization energy is the energy needed to remove (get appart) an electron from a neutral atom or ion in gas phase.Jun 19, 2016