Answer:
24.7 grams H₂O
Explanation:
To find the mass of water, you should (1) convert from grams HCl to moles (via molar mass from periodic table), then (2) convert from moles HCl to moles H₂O (via mole-to-mole ratio from equation), and then (3) convert from moles H₂O to grams (via molar mass from periodic table).
1 HCl + KOH --> 1 H₂O + KCl
Molar Mass (HCl): 1.008 g/mol + 35.45 g/mol
Molar Mass (HCl): 36.458 g/mol
Molar Mass (H₂O): 2(1.008 g/mol) + 16.00 g/mol
Molar Mass (H₂O): 18.016 g/mol
50 g HCl 1 mole HCl 1 mole H₂O 18.016 g
-------------- x ------------------ x ------------------- x ------------------- = 24.7 g H₂O
36.458 g 1 mole HCl 1 mole H₂O
Catastrophism is a theory that stated that earth was shaped by a suddentmassive violent events that happened within a short period of time.
Uniformitarianism, on the other hand, is a theory that stated earth was shaped by slow and gradual events over a long period of time, which could take millions of years.
First blank = cools. Not sure about the second blank.
Hope this helped at least a bit :)
<u>Answer:</u> The equilibrium constant for the total reaction is 
<u>Explanation:</u>
We are given:

We are given two intermediate equations:
<u>Equation 1:</u> 
The expression of
for the above equation is:
![K_{c_1}=\frac{[NH_3]^2}{[N_2][H_2]^3}](https://tex.z-dn.net/?f=K_%7Bc_1%7D%3D%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5BH_2%5D%5E3%7D)
.......(1)
<u>Equation 2:</u> 
The expression of
for the above equation is:
![K_{c_2}=\frac{[HI]^2}{[H_2][I_2]}](https://tex.z-dn.net/?f=K_%7Bc_2%7D%3D%5Cfrac%7B%5BHI%5D%5E2%7D%7B%5BH_2%5D%5BI_2%5D%7D)
......(2)
Cubing both the sides of equation 2, because we need 3 moles of HI in the main expression if equilibrium constant.
![(41)^3=\frac{[HI]^6}{[H_2]^3[I_2]^3}](https://tex.z-dn.net/?f=%2841%29%5E3%3D%5Cfrac%7B%5BHI%5D%5E6%7D%7B%5BH_2%5D%5E3%5BI_2%5D%5E3%7D)
Now, dividing expression 1 by expression 2, we get:
![\frac{K_{c_1}}{K_{c_2}}=\left(\frac{\frac{[NH_3]^2}{[N_2][H_2]^3}}{\frac{[HI]^6}{[H_2]^3[l_2]^3}}\right)\\\\\\\frac{0.282}{68921}=\frac{[NH_3]^2[I_2]^3}{[N_2][HI]^6}](https://tex.z-dn.net/?f=%5Cfrac%7BK_%7Bc_1%7D%7D%7BK_%7Bc_2%7D%7D%3D%5Cleft%28%5Cfrac%7B%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BN_2%5D%5BH_2%5D%5E3%7D%7D%7B%5Cfrac%7B%5BHI%5D%5E6%7D%7B%5BH_2%5D%5E3%5Bl_2%5D%5E3%7D%7D%5Cright%29%5C%5C%5C%5C%5C%5C%5Cfrac%7B0.282%7D%7B68921%7D%3D%5Cfrac%7B%5BNH_3%5D%5E2%5BI_2%5D%5E3%7D%7B%5BN_2%5D%5BHI%5D%5E6%7D)
![\frac{[NH_3]^2[I_2]^3}{[N_2][HI]^6}=4.09\times 10^{-6}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BNH_3%5D%5E2%5BI_2%5D%5E3%7D%7B%5BN_2%5D%5BHI%5D%5E6%7D%3D4.09%5Ctimes%2010%5E%7B-6%7D)
The above expression is the expression for equilibrium constant of the total equation, which is:

Hence, the equilibrium constant for the total reaction is 
Answer:
B
Explanation:
First of all it is important to know that a half filled orbital is particularly stable. In phosphorus all the electrons occur singly in the 3p sublevel minimizing inter electronic repulsion hence it is more difficult to remove an electron from this energetically stable arrangement. In sulphur, electrons are paired in one of the 3p orbitals thereby lowering the energy of that level due to instability caused by interelectronic repulsion between two electrons in the same orbital.