Answer:
15.438g H2O
Explanation:
First you need to find the reaction equation:
2H2O+2Na=2NaOH + H2
Hydrogen is a diatomic molecule so it will have a subscript of 2 on the right hand side. From there we can balance the reaction.
Then we can use stoichiometry:
34.2g NaOH * (1 mol NaOH/39.908g NaOH) * (2 mol H2O/2 mol NaOH) * (18.015g H2O/1 mol H20) = 15.438g H2O
It is important that when you use stoichiometry that all your units cancel out until you only have the unit you want.
A solution with a higher concentration of hydroxide ions than hydrogen ions is basic solution.
This solution formed by Base dissolved in water and release hydroxide ions.
The PH of the solution is greater than 7
The tert-butyl chloride in ethanol would surely react faster than the solvolysis of 1-chloro-2,2-dimethyl propane. It is known that both reactions are under the SN2 category so it would be hard for these reactions to occur. However, SN1 reactions are possible because of the ethanol which is a polar solvent. Both would form carbocations but tert-butyl chloride forms a more stable carbocation while the 1-chloro-2,2-dimethyl propane forms a primary carbocation only.
The answer is 2, liquid to vapor because vaporization is the process of liquids to vapors.
Answer:
You will have 19.9L of Cl2
Explanation:
We can solve this question using:
PV = nRT; V = nRT/P
<em>Where V is the volume of the gas</em>
<em>n the moles of Cl2</em>
<em>R is gas constant = 0.082atmL/molK</em>
<em>T is 273.15K assuming STP conditions</em>
<em>P is 1atm at STP</em>
The moles of 63g of Cl2 gas are -molar mass: 70.906g/mol:
63g * (1mol / 70.906g) = 0.8885 moles
Replacing:
V = 0.8885mol*0.082atmL/molK*273.15K/1atm
V = You will have 19.9L of Cl2