Answer:
456
Step-by-step explanation:
thank you for the free ponits :)))
Answer:
15) K'(t) = 5[5^(t)•In 5] - 2[3^(t)•In 3]
19) P'(w) = 2e^(w) - (1/5)[2^(w)•In 2]
20) Q'(w) = -6w^(-3) - (2/5)w^(-7/5) - ¼w^(-¾)
Step-by-step explanation:
We are to find the derivative of the questions pointed out.
15) K(t) = 5(5^(t)) - 2(3^(t))
Using implicit differentiation, we have;
K'(t) = 5[5^(t)•In 5] - 2[3^(t)•In 3]
19) P(w) = 2e^(w) - (2^(w))/5
P'(w) = 2e^(w) - (1/5)[2^(w)•In 2]
20) Q(W) = 3w^(-2) + w^(-2/5) - w^(¼)
Q'(w) = -6w^(-2 - 1) + (-2/5)w^(-2/5 - 1) - ¼w^(¼ - 1)
Q'(w) = -6w^(-3) - (2/5)w^(-7/5) - ¼w^(-¾)
7 squared = 49 and 9 squared= 81 add up 49 and 81 and you get 130
Mean, x_bar = 1518
Standard deviation, sigma = 325
Range required: 1550 ≤ X ≤ 1575
Z = (X - x_bar)/sigma
Z1 = (1550-1518)/325 ≈ 0.1
Z2 = (1575-1518)/325 ≈ 0.18
From Z tables,
P(Z1) = 0.5398
P(Z2) = 0.5714
P(1550≤X≤1575) = P(Z2) - P(Z1) = 0.5714 - 0.5398 = 0.0316
The correct answer is C.