Answer:
kilograms
Explanation:
hope this helps, pls mark brainliest :D
Answer:
6.43 moles of NF₃.
Explanation:
The balanced equation for the reaction is given below:
N₂ + 3F₂ —> 2NF₃
From the balanced equation above,
3 moles of F₂ reacted to produce 2 moles of NF₃.
Finally, we shall determine the number of mole of nitrogen trifluoride (NF₃) produced by the reaction of 9.65 moles of Fluorine gas (F₂). This can be obtained as follow:
From the balanced equation above,
3 moles of F₂ reacted to produce 2 moles of NF₃.
Therefore, 9.65 moles of F₂ will react to to produce = (9.65 × 2)/3 = 6.43 moles of NF₃.
Thus, 6.43 moles of NF₃ were obtained from the reaction.
Answer:
6.2 g
Explanation:
In a first-order decay, the formula for the amount remaining after <em>n</em> half-lives is
where
<em>N</em>₀ and <em>N</em> are the initial and final amounts of the substance
1. Calculate the <em>number of half-lives</em>.
If
2. Calculate the <em>final mass</em> of the substance.
Answer:
14700J
Explanation:
From the question given, the following were obtained:
M = 100g
ΔT = 35° C
C = 4.2J/g °C
Q=?
The heat transferred can calculated for by using the following equation
Q = MCΔT
Q = 100 x 4.2 x 35
Q= 14700J
The answer is: the pressure inside a can of deodorant is 1.28 atm.
Gay-Lussac's Law: the pressure of a given amount of gas held at constant volume is directly proportional to the Kelvin temperature.
p₁/T₁ = p₂/T₂.
p₁ = 1.0 atm.; initial pressure
T₁ = 15°C = 288.15 K; initial temperature.
T₂ = 95°C = 368.15 K, final temperature
p₂ = ?; final presure.
1.0 atm/288.15 K = p₂/368.15 K.
1.0 atm · 368.15 K = 288.15 K · p₂.
p₂ = 368.15 atm·K ÷ 288.15 K.
p₂ = 1.28 atm.
As the temperature goes up, the pressure also goes up and vice-versa.