Compare the density of the object in question to the density of water. If its density is less than water, it will float. For example, oak floats because its density is 0.7 g/cm³. If the density of an object is greater than water, it will sink.
Answer:
the heat rate required to cool down the gas from 535°C until 215°C is -2.5 kW.
Explanation:
assuming ideal gas behaviour:
PV=nRT
therefore
P= 109 Kpa= 1.07575 atm
V= 67 m3/hr = 18.6111 L/s
T= 215 °C = 488 K
R = 0.082 atm L /mol K
n = PV/RT = 109 Kpa = 1.07575 atm * 18.611 L/s /(0.082 atm L/mol K * 488 K)
n= 0.5 mol/s
since the changes in kinetic and potencial energy are negligible, the heat required is equal to the enthalpy change of the gas:
Q= n* Δh = 0.5 mol/s * (- 5 kJ/mol) =2.5 kW
A chemical equation does not give information about the following:
- It usually does not give the "state of the substances". There are three states: Solid(s), liquid(q) and gas(vap).
- The chemical equation does not show whether it is complete or incomplete.
- The "speed of the reaction" is not mentioned.
- The "concentration of the substance" whether it is diluted or concentrated is not mentioned.
- The "rate of the reaction", temperature, catalyst, pressure etc is not mentioned. These can be mentioned "above or below the arrow".
Answer: 0.14 kg
Explanation:
Gourmet chocolate candy contains 7.00 g of dietary fat in each 22.7-g piece
That is 1 piece of candy weighs 22.7 g and contains 7.00 g of dietary fat
Converting the mass in pounds to kg
1 lb = 0.45 kg = 450 grams (1kg=1000g)
Number of pieces = 
1 piece contains = 7 g of dietary fat
Thus 30 pieces would contain =
of dietary fat
1 g = 0.001 kg
Thus 140 grams =
Thus 0.14 kg of dietary fat are in a box containing 1.00 lb of candy.
Answer:

Explanation:

if temperature is constant.

if we are comparing two gases,

Let chlorine be Gas 1 and ethane be Gas 2
Data:
M₁ = 70.91 g/mol
M₂ = 30.07 g/mol
Calculation
