It is 50. The answer is 50. 10x5=50 50x1=50
The values of the coefficients would be 4, 5, 4, and 6 respectively.
<h3>Balancing chemical equations</h3>
The equation of the reaction can be represented by the following chemical equation:
ammonia (g) + oxygen (g) ---> nitrogen monoxide (g) + water (g)
+
--->
+ 
Thus, the coefficient of ammonia will be 4, that of oxygen will be 5, that of nitrogen monoxide will be 4, and that of water will be 6.
More on balancing chemical equations can be found here: brainly.com/question/15052184
#SPJ1
The food chain always begins with a sun without it there would be no food chain... hope this helped!
Answer:
3.64g
Explanation:
Given parameters:
Mass of NH₃ = 18.1g
Mass of Cu₂O = 90.4g
Unknown:
Limiting reactant = ?
Mass of N₂ formed = ?
Solution:
The reaction equation is given as:
Cu₂O + 2NH₃ → 6Cu + N₂ + 3H₂O
The limiting reactant is the one in short supply in the reaction. Let us find the number of moles of the given species;
Number of moles =
Molar mass of Cu₂O = 2(63.6) + 16 = 143.2g/mol
Molar mass of NH₃ = 14 + 3(1) = 17g/mol
Number of moles of Cu₂O =
= 0.13moles
Number of moles of NH₃ =
= 5.32moles
From this reaction;
1 mole of Cu₂O combines with 2 mole of NH₃
So 0.13moles of Cu₂O will combine with 0.13 x 2 mole of NH₃
= 0.26moles of NH₃
Therefore, Cu₂O is the limiting reactant. Ammonia is in excess;
Mass of N₂;
Mass = number of moles x molar mass
1 mole of Cu₂O will produce 1 mole of N₂
0.13 mole of Cu₂O will produce 0.13 mole of N₂
Mass = 0.13 x (2 x 14) = 3.64g
Nitrogen fixation is the process that makes atmospheric nitrogen available to plants by mutualistic and free-living bacteria. The process is undertaken by the rhizobium bacteria that live in root roots of plants such as legumes. The mutualistic relationship is that the plant supplies the bacteria with a habitat in which to live, water, and nutrients, and the bacteria supply nitrogen for making plant proteins.