1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AysviL [449]
4 years ago
7

You place a point charge q = -4.00 nC a distance of 9.00 cm from an infinitely long, thin wire that has linear charge density 3.

00×10−9C/m. What is the magnitude of the electric force that the wire exerts on the point charge?
Physics
1 answer:
valentinak56 [21]4 years ago
3 0

Answer:

F=6\times 10^{-7}\ N

Explanation:

Given:

  • quantity of point charge, q=-4\times 10^{-9}\ C
  • radial distance from the linear charge, r=0.09\ m
  • linear charge density, \lambda=3\times 10^{-9}\ C.m^{-1}

<u>We know that the electric field by the linear charge  is given as:</u>

E=\frac{\lambda}{2\pi.\epsilon_0.r}

E=\frac{1}{2}\times 9\times 10^9\times \frac{3\times10^{-9}}{0.09}

E=150\ N.C^{-1}

<u>Now the force on the given charge can be given as:</u>

F=E.q

F=150\times 4\times 10^{-9}

F=6\times 10^{-7}\ N

You might be interested in
A 64.0 cm long cord is vibrating in such a manner that it forms a standing wave with two antinodes. (The cord is fixed at both e
xxMikexx [17]

Answer:

the wave represents the second harmonic.

Explanation:

Given;

length of the cord, L = 64 cm

The first harmonic of a cord fixed at both ends is given as;

f_o = \frac{V}{2L}

The wavelength of a standing wave with two antinodes is calculated as follows;

L = N---> A -----> N    +   N ----> A -----> N

Where;

N is node

A is antinode

L = N---> A -----> N    +   N ----> A -----> N =  λ/2  + λ/2

L = λ

The harmonic is calculated as;

f = \frac{V}{\lambda} \\\\f = \frac{V}{L} = 2(\frac{V}{2L} ) = 2(f_o) = 2^{nd} \ harmonic

Therefore, the wave represents the second harmonic.

L = λ

5 0
3 years ago
Describa con sus palabras que fue lo que descubrio galileo en su legendario experimento en la torre inclinada de pisa
german

Answer:

En 1589 Galileo realizó un experimento lanzando dos bolas de diferentes masas desde la famosa Torre Inclinada de Pisa para demostrar que el tiempo de caída es independiente de la masa de la bola. A través de este experimento, Galileo descubrió que los cuerpos caían casi simultáneamente, refutando la teoría de Aristóteles de que la tasa de caída era proporcional a la masa del cuerpo.  

Debido a la imperfección de los equipo de medición de esa época, la caída libre de los cuerpos era casi imposible de estudiar. En busca de una forma de reducir la velocidad de movimiento, Galileo reemplazó la caída libre por rodar sobre una superficie inclinada, donde había velocidades y resistencia del aire significativamente más bajas. Se notó que con el tiempo, la velocidad del movimiento aumenta: los cuerpos se mueven con aceleración. Se concluyó que la velocidad y la aceleración no dependen ni de la masa ni del material de la pelota.

 

5 0
3 years ago
Which term describes the forces acting on the car? A. inertial B. buoyant C. balanced D. unbalanced
Anna35 [415]
The answer is unbalanced because the forces actually act on each other.
3 0
3 years ago
The Moon and Earth rotate about their common center of mass, which is located about RcM 4700 km from the center of Earth. (This
erica [24]

To solve this problem it is necessary to apply the concepts related to gravity as an expression of a celestial body, as well as the use of concepts such as centripetal acceleration, angular velocity and period.

PART A) The expression to find the acceleration of the earth due to the gravity of another celestial body as the Moon is given by the equation

g = \frac{GM}{(d-R_{CM})^2}

Where,

G = Gravitational Universal Constant

d = Distance

M = Mass

R_{CM} = Radius earth center of mass

PART B) Using the same expression previously defined we can find the acceleration of the moon on the earth like this,

g = \frac{GM}{(d-R_{CM})^2}

g = \frac{(6.67*10^{-11})(7.35*10^{22})}{(3.84*10^8-4700*10^3)^2}

g = 3.4*10^{-5}m/s^2

PART C) Centripetal acceleration can be found throughout the period and angular velocity, that is

\omega = \frac{2\pi}{T}

At the same time we have that centripetal acceleration is given as

a_c = \omega^2 r

Replacing

a_c = (\frac{2\pi}{T})^2 r

a_c = (\frac{2\pi}{26.3d(\frac{86400s}{1days})})^2 (4700*10^3m)

a_c = 3.34*10^{-5}m/s^2

3 0
3 years ago
6th grade science !!!!!!!!!!!!!!!​
posledela

Answer:

71

Explanation:

5 0
3 years ago
Other questions:
  • Helppp, will give brainliest answer !!
    15·1 answer
  • A rubbit gets down from a rump which its /\x=0.85m in 0.5s, The rubbit's mass is 2kg, what is the net Force?
    7·1 answer
  • PLEASE HELP!!!
    12·2 answers
  • 3. Infer A car is travelling down a
    7·1 answer
  • Each graph has an x- and y-axis except
    13·1 answer
  • Two disadvantages of spreadsheet
    15·2 answers
  • Newton's second law of motion says that the mass of an object times its acceleration is equal to the net force on the object. Wh
    11·1 answer
  • The gravitational acceleration on the surface of the moon is 1/6 what it is on earth. If a man could jump straight up 0.7 m (abo
    13·1 answer
  • Thanks + BRAINLIST <br><br> Please need correct answer asappp
    9·2 answers
  • If the horse lifts a 50 kilogram mass a vertical distance of 3 meters in 2 seconds, what is the horse’s minimum power output?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!