A change in position with respect to a reference point is called motion
hope it helps...
Answer: The mass of the sculpture is 11.8kg
Explanation:
Using the equation of fundamental frequency of a taut string.
f = (1/2L)*√(T/μ) .... (Eqn1)
Where
f= frequency in Hertz =80Hz
T = Tension in the string = Mg
M represent the mass of the substance (sculpture) =?
g= 9.8m/s^2
L= Length of the string=90cm=0.9m
μ= mass density = mass of string /Length of string
mass of string =5g=0.005kg
L=0.9m
μ=0.005/0.9 = 0.0056kg/m
Using (Eqn1)
80= 1/(2*0.9) √(T/0.0056)
144= √(T/0.0056)
Square both sides
20736= T/0.0056
T= 116.12N
Recall that T =Mg
116.12= M * 9.8
M=116.12/9.8
M= 11.8kg
Therefore the mass of the sculpture is 11.8kg
1 year = (365 / 121) = 3.02 half-lifes. Let's call it 3 .
The amount of radioactive isotope remaining after 3 half-lifes is
(1/2) x (1/2) x (1/2) = 1/8
A year after the medical lab received the 24 kg of W-181,
there will still be 24 kg of stuff in the container.
But only 3 kg of it will still be W-181. The other 21 kg will be
whatever substances W-181 becomes when it decays.
Sadly, even the 3 kg of good stuff won't be usable anymore ...
it'll be thoroughly mixed with the 21 kg of junk. It would be harder
and more expensive to try and separate them than to buy a new
can of pure W-181, and USE it before 7/8 of it has deteriorated.
Answer:
B. counterclockwise
Explanation:
We shall apply Lenz's law to find direction of induced current . According to it , direction of induced current is such that the magnetic field produced by it will try to nullify the change in magnetic field that produces it. Increase in magnetic field in down ward direction is producing it so to nullify it , magnetic field induced will be in upward direction. For it current induced will be anticlockwise.
Answer:
6.88 m/s
Explanation:
The Conservation of Energy states that:
Initial Kinetic Energy + Initial Potential Energy = Final Kinetic Energy + Final Potential Energy
So we can write

We can cancel the common factor of
which leaves us with

Lets solve for 

Subtract
from both sides of the equation.

Multiply both sides of the equation by 2.

Simplify the left side.
Apply the distributive property.

Cancel the common factor of 2.

Take the square root of both sides of the equation to eliminate the exponent on the right side.

We are given
.
We can now solve for the final velocity.

Anything multiplied by 0 is 0.


