By
vector addition.
In fact, velocity is a vector, with a magnitude intensity, a direction and a verse, so we can't simply do an algebraic sum of the two (or more velocities).
First we need to decompose each velocity on both x- and y-axis (if we are on a 2D-plane), then we should do the algebraic sum of all the components on the x- axis and of all the components on the y-axis, to find the resultants on x- and y-axis. And finally, the magnitude of the resultant will be given by

where Rx and Rx are the resultants on x- and y-axis. The direction of the resultant will be given by

where

is its direction with respect to the x-axis.
Answer:

Explanation:
Given that,
The compression in the spring, x = 0.0647 m
Speed of the object, v = 2.08 m/s
To find,
Angular frequency of the object.
Solution,
We know that the elation between the amplitude and the angular frequency in SHM is given by :

A is the amplitude
In case of spring the compression in the spring is equal to its amplitude



So, the angular frequency of the spring is 32.14 rad/s.
When heat energy is transferred from direct contact between a warm and a cold object , it is known as heat transfer by conduction.
In conduction, the heat transfer takes place within an object or between two objects in contact until the temperature becomes uniform. this kind of heat transfer continues until the temperature at two ends between which the heat transfer take place , becomes equal. Heat transfer takes place from point at high temperature to point at lower temperature.
Answer:
The value is
or 21.45%
Explanation:
From the question we are told that
The first reservoir is at steam point
The second reservoir is at room temperature 
Generally the maximum theoretical efficiency of a Carnot engine is mathematically evaluated as

=> 
=>
Constant speed because the time is directly proportional to the speed (2). The average speed is 2 m/s