Answer:
1) Hence, the period is 0.33 s.
2) The amplitude is 10 cm.
Explanation:
1) The period is given by:

Where:
f: is the frequency = 3 bob up and down each second = 3 s⁻¹ = 3 Hz
Hence, the period is 0.33 s.
2) The amplitude is the distance between the equilibrium position and the maximum position traveled by the spring. Since the spring is moving up and down over a distance of 20 cm, then the amplitude is:
Therefore, the amplitude is 10 cm.
I hope it helps you!
Complete question is;
Does the galvanometer deflect to the left or the right when
a) the magnet is being pushed in
b) the magnet is being pulled out
c) the magnet is being held steady?
Answer:
Option A - when the magnet is being pulled out
Explanation:
Faraday’s law of electromagnetic induction states that: “Voltage is induced in a circuit whenever relative motion exists between the conductor and the magnetic field, and the magnitude of the voltage will be proportional to the rate of change of the flux”.
Now, applying it to the question, When the magnet is moved towards the sensitive center of the galvanometer and then pulled out, the needle of the galvanometer will deflect away from its center position in one direction only but when it is held steady, the needle of the galvanometer will return back to zero.
Answer:
(a)0.0002778
(b)
Explanation:
(a) The minute hand has a period of 60 minutes ( or 60 * 60 = 3600 seconds) for 1 circle. Its frequency per second would be
1 / 3600 = 0.0002778
(b) The hour hand has a period of 24 hours ( or 24*60 * 60 = 86400
seconds) for 1 circle. Its frequency per second would be
