Answer:
294 moles of P
Explanation:
For every 1 mol of P4O10 contains 4 mol of P
so;
73.5 mol P4O10 × <u> </u><u> </u><u> </u><u> </u><u> </u><u>4 mol P</u><u> </u><u> </u><u> </u><u> </u><u> </u>
1 mol P4O10
= 73.5 × 4
= 294 moles of P
Answer:
there must be free-moving electrons in a compound to conduct electricity.
in solid ionic compounds, there are no free electrons so it can't conduct electricity.
But in aqueous form the forces of attraction are broken and the ions (cations and anions) are free to move. This means there are free electrons that allow the aqueous compound to conduct electricity.
Answer:
The standard change in free energy for the reaction = - 437.5 kj/mole
Explanation:
The standard change in free energy for the reaction:
4 KClO₃ (s) → 3 KClO₄(s) + KCl(s)
Given that ΔGf(KClO3(s)) = -290.9 kJ/mol;
ΔGf(KClO4(s)) = -300.4 kJ/mol;
ΔGf(KCl(s)) = -409 kJ/mol
According to Hess's law
ΔGr (Free energy change of reaction)= ∑(Product free energy - reactant free energy)
⇒ ΔGr⁰ = {3 x (-300.4) + (-409)} - {3 x (- 290.9)}
= - 901.2 - 409 + 872.7
= - 437.5 kj/mole
The transfer of energy that occurs when a force is applied over a distance is WORK.
Hope this helps!
So what do you want me to do
Explanation