Answer:
mass flow rate at water condenses is 36.72 kg/min
Explanation:
given data
temperature t1 = 38°C
temperature t2 = 14°C
humidity ∅= 97 % = 0.97
rate v = 510 m³/min
to find out
mass flow rate at water condenses
solution
by gas equation we find here mass flow rate that is
pv = mRT
put here value and p is 0.066626 bar at 38°C and find m
m = 0.06626 ×
× 510 / 287×311
m = 37.85 kg/min
so at water condenses mass flow rate is express as
∅ = M / m
Mass flow rate M = ∅ × m
M = 0.97 × 37.85
mass flow rate = 36.72 kg/min
so mass flow rate at water condenses is 36.72 kg/min
Answer:
According to the data given in the question, experiment on table two pulling and falling masses are arranged in the fig. 250 g is pulling right side and 100 g pulling down. The gravitational force is common to both the masses, so we cannot say that the block moves towards heavier mass, also the block does not move towards the lighter mass.
Obviously, the effect of heavier mass of 250 g is more on the block, so the block moves towards right bottom corner. i.e., diagonally between two masses
please find the attachment.
Answer: If it has ions, it is an electrolyte
Explanation:
Let's start by explaining that electrolytes are compounds that contain charged particles or<u> ions</u>, which can be cations (positive ions) or anions (negative ions).
So, it is this composition that makes an electrolytic material conduct electricity.
In this sense, the way to identify if a material is an electrolyte or not, is knowing whether it is composed of ions or not.
Answer:
Explanation:
a ) The direction of angular velocity vector of second hand will be along the line going into the plane of dial perpendicular to it.
b ) If the angular acceleration of a rigid body is zero, the angular velocity will remain constant.
c ) If another planet the same size as Earth were put into orbit around the Sun along with Earth the moment of inertia of the system will increase because the mass of the system increases. Moment of inertia depends upon mass and its distribution around the axis.
d ) Increasing the number of blades on a propeller increases the moment of inertia , because both mass and mass distribution around axis of rotation increases.
e ) It is not possible that a body has the same moment of inertia for all possible axes because a body can not remain symmetrical about all axes possible. Sphere has same moment of inertia about all axes passing through its centre.
f ) To maximize the moment of inertia of a flywheel while minimizing its weight, the shape and distribution of mass should be such that maximum mass of the body may be situated at far end of the body from axis of rotation . So flywheel must have thick outer boundaries and this should be
attached with axis with the help of thin rods .
g ) When the body is rotating at the same place , its translational kinetic energy is zero but its rotational energy can be increased
at the same place.